Lvc.Infra.Status

Require Import Util LengthEq String List Get.

Set Implicit Arguments.

Inductive status A :=
  | Success : A status A
  | Error : string status A.

Arguments Success [A] _.
Arguments Error [A] _%string.

Definition bind (A B : Type) (f : status A) (g : A status B) : status B :=
  match f with
    | Success ag a
    | Error eError e
  end.

Notation "'sdo' X <- A ; B" := (bind A (fun XB))
 (at level 200, X ident, A at level 100, B at level 200).

Definition option2status {A} : option A string status A.
intros [a|]. constructor 1. eapply a.
intros s. eapply (Error s).
Defined.

Lemma option2status_inv {A} o s (v:A)
      : option2status o s = Success v
       o = Some v.
Proof.
  destruct o; simpl; inversion 1; eauto.
Qed.

Arguments option2status [A] _ _%string.

Lemma bind_inversion (A B : Type) (f : status A) (g : A status B) (y : B) :
  bind f g = Success y x, f = Success x g x = Success y.
Proof.
  destruct f. firstorder. discriminate.
Qed.

Lemma bind_inversion' (A B : Type) (f : status A) (g : A status B) (y : B) :
  bind f g = Success y { x : A | f = Success x g x = Success y }.
Proof.
  destruct f. firstorder. discriminate.
Qed.

Reasoning over monadic computations

The monadInv H tactic below simplifies hypotheses of the form
        H: (do x <- a; b) = OK res
By definition of the bind operation, both computations a and b must succeed for their composition to succeed. The tactic therefore generates the following hypotheses:
x: ... H1: a = OK x H2: b x = OK res

Ltac monadS_inv1 H :=
  match type of H with
  | (Success _ = Success _) ⇒
      inversion H; clear H; try subst
  | (Error _ = Success _) ⇒
      discriminate
  | (bind ?F ?G = Success ?X) ⇒
      let x := fresh "x" in (
      let EQ1 := fresh "EQ" in (
      let EQ2 := fresh "EQ" in (
        destruct (bind_inversion' F G H) as [x [EQ1 EQ2]];
        clear H;
        try (monadS_inv1 EQ2))))
  end.

Ltac monadS_inv H :=
  match type of H with
  | (Success _ = Success _) ⇒ monadS_inv1 H
  | (Error _ = Success _) ⇒ monadS_inv1 H
  | (bind ?F ?G = Success ?X) ⇒ monadS_inv1 H
  | (@eq _ (@bind _ _ _ _ _ ?G) (?X)) ⇒
    let X := fresh in remember G as X; simpl in H; subst X; monadS_inv1 H
  end.

Section ParametricOptionMapIndex.
  Variables X Y : Type.
  Hypothesis f : nat X status Y : Type.

  Fixpoint smapi_impl (n:nat) (L:list X) : status (list Y) :=
    match L with
      | x::L
        sdo v <- f n x;
          sdo vl <- smapi_impl (S n) L;
          Success (v::vl)
      | _Success nil
    end.

  Definition smapi := smapi_impl 0.

End ParametricOptionMapIndex.

Section ParametricZip.
  Variables X Y Z : Type.
  Hypothesis f : X Y status Z : Type.

  Fixpoint szip (L:list X) (L':list Y) : status (list Z) :=
    match L, L' with
      | x::L, y::L'
        sdo z <- f x y;
          sdo ZL <- szip L L';
          Success (z::ZL)
      | _, _Success nil
    end.

End ParametricZip.

Section ParametricStatusMap.
  Variables X Y : Type.
  Hypothesis f : X status Y : Type.

  Fixpoint smap (L:list X) : status (list Y) :=
    match L with
      | x::L
        sdo v <- f x;
          sdo vl <- smap L;
          Success (v::vl)
      | _Success nil
    end.

  Lemma smap_spec L L'
  : smap L = Success L'
     n x, get L n x y, f x = Success y get L' n y.
  Proof.
    intros. general induction L; simpl in × |- *; isabsurd.
    - monadS_inv H. inv H0; eauto using get.
      edestruct IHL; eauto. dcr; eauto using get.
  Qed.

  Lemma smap_length L L'
  : smap L = Success L'
     length L' = length L.
  Proof.
    intros. general induction L; simpl in *; try monadS_inv H; simpl; eauto.
  Qed.

End ParametricStatusMap.

Lemma smap_agree_2 X X' Y (f: X status Y) (g: X' status Y) L L'
: ( n x y, get L n x get L' n y f x = g y)
   length L = length L'
   smap f L = smap g L'.
Proof.
  intros. eapply length_length_eq in H0.
  general induction H0; simpl; eauto.
  erewrite <- H; eauto using get. erewrite IHlength_eq; eauto using get.
Qed.

Lemma szip_length_ass X Y Z (f:XY status Z) A B C k
  : szip f A B = Success C
     length A = length B
     length A = k
     length C = k.
Proof.
  intros EQ LEN1 LEN2; subst. length_equify.
  general induction LEN1; simpl in *; eauto.
  monadS_inv EQ; simpl; eauto.
Qed.

Hint Resolve szip_length_ass : len.

Lemma szip_get X Y Z (f:XY status Z) A B C n a b c
  : szip f A B = Success C
     get A n a
     get B n b
     get C n c
     f a b = Success c.
Proof.
  intros EQ GetA GetB GetC.
  general induction GetA; inv GetB; inv GetC; simpl in *;
    monadS_inv EQ; eauto.
Qed.

Inductive status_eq {A} (eqA : relation A) : status A status A Prop :=
| status_eq_Error s : status_eq eqA (Error s) (Error s)
| status_eq_Some : a a', eqA a a' status_eq eqA (Success a) (Success a').

Require Import Containers.Tactics.

Program Instance success_Equivalence A eqA `(Equivalence A eqA) :
  Equivalence (status_eq eqA).
Next Obligation.   inductive_refl.
Qed.
Next Obligation.   inductive_sym.
Qed.
Next Obligation.   inductive_trans.
Qed.