Library GCSemantics

Semantics of GC

We give an inductive axiomatic semantics to GC, and characterize weakest preconditions with a recursive function. We show the equivalence of both formulations.
Require Import Facts States GCSyntax.
Set Implicit Arguments.
Unset Strict Implicit.

Module GCSemantics (Sigma : State).
Module GCSyn := GCSyntax.GCSyntax Sigma.
Export GCSyn.

Implicit Types (P Q : Pred state) (x y z : state).
Implicit Types (a : action) (b : guard) (G : gc) (s t : cmd).

Test if any guard is true.

Definition gtest G : statebool :=
  fun xhas (fun p : guardp x) (unzip1 G).
Coercion gtest : gc >-> Funclass.

Axiomatic Semantics


Inductive wps Q : cmdPred state :=
| wps_skip x :
    Q x
    wps Q Skip x
| wps_assn a x :
    Q (a x) →
    wps Q (Assn a) x
| wps_seq s t x P :
    wps P s x
    P <<= wps Q t
    wps Q (Seq s t) x
| wps_case G x :
    G x
    ( b s, (b,s) \in Gb xwps Q s x) →
    wps Q (Case G) x
| wps_loop_true G x P :
    G x
    ( b s, (b,s) \in Gb xwps P s x) →
    P <<= wps Q (Do G) →
    wps Q (Do G) x
| wps_loop_false G x :
    ~~G x
    Q x
    wps Q (Do G) x.

WP Semantics


Definition wpG´ (wp : Pred statecmdPred state) Q : gcPred state :=
  fix rec G x := match G with
  | (b,s) :: G(b xwp Q s x) rec G x
  | [::]True
  end.

Fixpoint wpg Q s : Pred state :=
  match s with
  | SkipQ
  | Assn aQ \o a
  | Seq s twpg (wpg Q t) s
  | Case Gfun xgtest G x wpG´ wpg Q G x
  | Do GFix (fun P xif gtest G x then wpG´ wpg P G x else Q x)
  end.

Notation wpG := (wpG´ wpg).

Equivalence of axiomatic and wp semantics


Lemma gtest_cons (G : gc) b s x :
  gtest ((b,s) :: G) x = b x || G x.
Proof. by []. Qed.

Lemma gtestP (G : gc) x :
  reflect ( (b:guard) (s:cmd), (b,s) \in G b x) (G x).
Proof.
  apply: (iffP hasP) ⇒ [[b/mapP[[ s]/=membx]]|[b[s[mem bx]]]].
  by , s. b ⇒ //. apply/mapP. by (b,s).
Qed.

Lemma gtest_contra (G : gc) b s x :
  (b,s) \in G~~G x~~b x.
Proof.
  movemem. apply/contrabx. apply/gtestP. by b, s.
Qed.

Lemma wpgG_mono :
  ( s, monotone (wpg^~ s)) ( G, monotone (wpG^~ G)).
Proof.
  apply: gc_ind ⇒ /=;
    try (moveG ih P Q le; apply: fix_monoI x; case: ifP); firstorder.
Qed.

Lemma wpg_mono s : monotone (wpg^~ s). by case: wpgG_mono. Qed.
Lemma wpG_mono G : monotone (wpG^~ G). by case: wpgG_mono. Qed.

Lemma wpgG_wps :
  ( s Q, wpg Q s <<= wps Q s)
  ( G Q x,
      wpG Q G x b s, (b,s) \in Gb xwps Q s x).
Proof with eauto using wps.
  apply: gc_ind...
  - moveG ih Q x /=[h1 h2]...
  - moveG ih Q x /=. elim⇒ {x}x P h1 h2.
    case: ifPni gx. apply (wps_loop_true (P := P))...
    exact: wps_loop_false.
  - moveQ b s x. by rewrite/wpG.
  - moveb s G ihs ihG Q x/= [h1 h2] .
    rewrite inE ⇒ /orP[/eqP[->->]|]...
Qed.

Lemma wpg_wps Q s : wpg Q s <<= wps Q s.
Proof. case: wpgG_wps; eauto. Qed.

Lemma wps_wpG Q (G:gc) x :
  ( b s, (b,s) \in Gb xwpg Q s x) →
  wpG Q G x.
Proof.
  elim: G ⇒ //=-[b s]G ih h. split. apply: h. exact: mem_head.
  apply: ih t mem. apply: h. by rewrite inE mem orbT.
Qed.

Lemma wps_wpg Q (s : cmd) : wps Q s <<= wpg Q s.
Proof with eauto using wpg_mono, wpG_mono, wps_wpG.
  movex. elim⇒ {Q s x}/=...
  - moveQ s t x P _ ih1 _ ih2. exact: wpg_mono ih1.
  - moveQ G x P gt _ /wps_wpG ih1 _ ih2. apply: fix_fold.
    rewrite gt. exact: wpG_mono ih1.
  - moveQ G x gt q. apply: fix_fold. by rewrite ifN.
Qed.

End GCSemantics.