ZF set theory without Skolem function symbols

Axiomatisations using membership and equality


Require Import Undecidability.FOL.Util.Syntax.
Require Import Undecidability.FOL.Util.FullTarski.
Require Import Undecidability.FOL.Util.FullDeduction.
Require Import Undecidability.FOL.ZF.
Import Vector.VectorNotations.
Require Import List.



Instance sig_func_empty : funcs_signature :=
    {| syms := False; ar_syms := False_rect nat |}.

Existing Instance ZF_func_sig.

Notation term' := (term sig_func_empty).
Notation form' := (form sig_func_empty _ _ falsity_on).

Notation "x ∈' y" := (atom sig_func_empty ZF_pred_sig elem ([x; y])) (at level 35) : syn.
Notation "x ≡' y" := (atom sig_func_empty ZF_pred_sig equal ([x; y])) (at level 35) : syn.


Fixpoint shift `{funcs_signature} `{preds_signature} n (t : term) :=
  match n with
  | O => t
  | S n => subst_term (shift n t)
  end.

Definition is_eset (t : term') :=
   ¬ ($0 t`[]).

Definition is_pair (x y t : term') :=
   $0 t`[] <~> $0 x`[] $0 y`[].

Definition is_union (x t : term') :=
   $0 t`[] <~> $0 shift 2 x $1 $0.

Definition sub' (x y : term') :=
   $0 x`[] ~> $0 y`[].

Definition is_power (x t : term') :=
   $0 t`[] <~> sub' $0 x`[].

Definition is_sigma (x t : term') :=
   $0 t`[] <~> $0 x`[] $0 x`[].

Definition is_inductive (t : term') :=
  ( is_eset $0 $0 t`[]) $0 t`[] ~> ( is_sigma $1 $0 $0 shift 2 t).

Definition is_om (t : term') :=
  is_inductive t is_inductive $0 ~> sub' t`[] $0.


Definition ax_ext' :=
   sub' $1 $0 ~> sub' $0 $1 ~> $1 ≡' $0.

Definition ax_eset' :=
   is_eset $0.

Definition ax_pair' :=
   is_pair $2 $1 $0.

Definition ax_union' :=
   is_union $1 $0.

Definition ax_power' :=
   is_power $1 $0.

Definition ax_om' :=
   is_om $0.

Definition ax_refl' :=
   $0 ≡' $0.

Definition ax_sym' :=
   $1 ≡' $0 ~> $0 ≡' $1.

Definition ax_trans' :=
   $2 ≡' $1 ~> $1 ≡' $0 ~> $2 ≡' $0.

Definition ax_eq_elem' :=
   $3 ≡' $1 ~> $2 ≡' $0 ~> $3 ∈' $2 ~> $1 ∈' $0.


Definition minZF' :=
  ax_ext' :: ax_eset' :: ax_pair' :: ax_union' :: ax_power' :: ax_om' :: nil.


Definition minZFeq' :=
  ax_refl' :: ax_sym' :: ax_trans' :: ax_eq_elem' :: minZF'.

Definition ax_sep' phi :=
   $0 ∈' $1 <~> $0 ∈' $2 phi[$0.: Nat.add 3 >> var].

Definition fun_rel' phi :=
   phi[$2 .: $1 .: Nat.add 3 >> var] ~> phi[$2 .: $0 .: Nat.add 3 >> var] ~> $1 ≡' $0.

Definition ax_rep' phi :=
  fun_rel' phi ~> $0 ∈' $1 <~> $0 ∈' $3 phi[$0 .: $1 .: Nat.add 4 >> var].


Inductive minZ : form' -> Prop :=
| minZ_base phi : In phi minZF' -> minZ phi
| minZ_sep phi : minZ (ax_sep' phi).


Inductive minZeq : form' -> Prop :=
| minZeq_base phi : In phi minZFeq' -> minZeq phi
| minZeq_sep phi : minZeq (ax_sep' phi).


Inductive minZF : form' -> Prop :=
| minZF_base phi : In phi minZF' -> minZF phi
| minZF_sep phi : minZF (ax_sep' phi)
| minZF_rep phi : minZF (ax_rep' phi).


Inductive minZFeq : form' -> Prop :=
| minZFeq_base phi : In phi minZFeq' -> minZFeq phi
| minZFeq_sep phi : minZFeq (ax_sep' phi)
| minZFeq_rep phi : minZFeq (ax_rep' phi).



Definition entailment_minZFeq' phi :=
  forall D (M : interp D) (rho : nat -> D), (forall sigma psi, In psi minZFeq' -> sigma psi) -> rho phi.


Definition entailment_minZF' phi :=
  forall D (M : @interp sig_func_empty _ D) (rho : nat -> D), extensional M -> (forall sigma psi, In psi minZF' -> sigma psi) -> rho phi.


Definition entailment_minZ phi :=
  forall D (M : @interp sig_func_empty _ D) (rho : nat -> D), extensional M -> (forall sigma psi, minZ psi -> sigma psi) -> rho phi.


Definition entailment_minZF phi :=
  forall D (M : @interp sig_func_empty _ D) (rho : nat -> D), extensional M -> (forall sigma psi, minZF psi -> sigma psi) -> rho phi.


Definition deduction_minZF' phi :=
  minZFeq' I phi.


Definition deduction_minZ phi :=
  minZeq TI phi.


Definition deduction_minZF phi :=
  minZFeq TI phi.