Set Implicit Arguments.
Require Import Morphisms Lia List.
From Undecidability.HOU Require Import calculus.calculus.
Import ListNotations.

Set Default Proof Using "Type".

(* * Conservativity *)

Section Constants.

  (* ** Constant Operations *)
  Section ConstantsOfTerm.
    Context {X: Const}.
    Implicit Types (s t: exp X).

    Fixpoint consts s :=
      match s with
      | var x => nil
      | const c => [c]
      | lambda s => consts s
      | app s t => consts s ++ consts t
      end.
    Definition Consts S := (flat_map consts S).

    Lemma Consts_consts s S:
      s S -> consts s Consts S.
    Proof.
      unfold Consts; eauto using flat_map_in_incl.
    Qed.

    Lemma Consts_montone S T:
      S T -> Consts S Consts T.
    Proof.
      unfold Consts; eauto using flat_map_incl.
    Qed.

    Lemma consts_ren delta s:
      consts (ren delta s) = consts s.
    Proof.
      induction s in delta |-*; cbn; intuition; congruence.
    Qed.

    Lemma vars_subst_consts x s sigma:
      x vars s -> consts (sigma x) consts (sigma s).
    Proof.
      intros H % vars_varof; induction H in sigma |-*; cbn; intuition.
      rewrite <-IHvarof; cbn; unfold funcomp; now rewrite consts_ren.
    Qed.

    Lemma consts_subst_in x sigma s:
      x consts (sigma s) -> x consts s \/
                           exists y, y vars s /\ x consts (sigma y).
    Proof.
      induction s in sigma |-*.
      - right; exists f; intuition.
      - cbn; intuition.
      - intros H % IHs; cbn -[vars]; intuition.
        destruct H0 as [[]]; cbn -[vars] in *; intuition.
        right. exists n. intuition.
        unfold funcomp in H1; now rewrite consts_ren in H1.
      - cbn; simplify; intuition.
        + specialize (IHs1 _ H0); intuition.
          destruct H as [y]; right; exists y; intuition.
        + specialize (IHs2 _ H0); intuition.
          destruct H as [y]; right; exists y; intuition.
    Qed.

    Lemma consts_subset_step s t:
      s > t -> consts t consts s.
    Proof.
      induction 1; cbn; intuition.
      subst. unfold beta.
      intros x ? % consts_subst_in; simplify; intuition.
      destruct H as [[|y] ?]; cbn in *; intuition.
    Qed.

    Lemma consts_subset_steps s t:
      s >* t -> consts t consts s.
    Proof.
      induction 1; firstorder using consts_subset_step.
    Qed.

    Lemma consts_subst_vars sigma s:
      consts (sigma s) consts s ++ Consts (map sigma (vars s)).
    Proof.
      intros x [|[y]] % consts_subst_in; simplify; intuition.
      right; eapply Consts_consts; eauto using in_map.
    Qed.

    Lemma consts_Lam k s:
      consts (Lambda k s) === consts s.
    Proof.
      induction k; cbn; intuition.
    Qed.

    Lemma consts_AppL S t:
      consts (AppL S t) === Consts S ++ consts t.
    Proof.
      induction S; cbn; intuition.
      rewrite IHS; now rewrite app_assoc.
    Qed.

    Lemma consts_AppR s T:
      consts (AppR s T) === consts s ++ Consts T.
    Proof.
      induction T; cbn; intuition.
      rewrite IHT. intuition.
      split; intros c; simplify; intuition.
    Qed.

  End ConstantsOfTerm.

  Section ConstantSubstitution.

    Implicit Types (X Y Z : Const).

    Fixpoint subst_consts {X Y} (kappa: X -> exp Y) s :=
      match s with
      | var x => var x
      | const c => kappa c
      | lambda s => lambda (subst_consts (kappa >> ren shift) s)
      | app s t => (subst_consts kappa s) (subst_consts kappa t)
      end.

    Lemma ren_subst_consts_commute X Y (zeta: X -> exp Y) delta s:
      subst_consts (zeta >> ren delta) (ren delta s) = ren delta (subst_consts zeta s).
    Proof.
      induction s in delta, zeta |-*; cbn; eauto.
      - f_equal. rewrite <-IHs. f_equal.
        asimpl. reflexivity.
      - now rewrite IHs1, IHs2.
    Qed.

    Lemma subst_consts_comp X Y Z (zeta: X -> exp Y) (kappa: Y -> exp Z) s:
      subst_consts kappa (subst_consts zeta s) =
      subst_consts (zeta >> subst_consts kappa) s.
    Proof.
      induction s in zeta, kappa |-*; cbn; eauto.
      - f_equal. rewrite IHs. f_equal. fext.
        unfold funcomp at 4; unfold funcomp at 4.
        intros; rewrite <-ren_subst_consts_commute.
        reflexivity.
      - now rewrite IHs1, IHs2.
    Qed.

    Lemma subst_consts_ident Y zeta s:
      (forall x: Y, x consts s -> zeta x = const x) -> subst_consts zeta s = s.
    Proof.
      intros; induction s in zeta, H |-*; cbn; eauto.
      eapply H; cbn; eauto.
      rewrite IHs; eauto.
      unfold funcomp; now intros x -> % H.
      rewrite IHs1, IHs2; eauto.
      all: intros; apply H; cbn; simplify; intuition.
    Qed.

    Lemma subst_const_comm {X Y} (zeta: X -> exp Y) sigma delta s:
      (forall x, sigma (delta x) = var x) ->
      subst_consts zeta (sigma s) = (sigma >> subst_consts zeta) (subst_consts (zeta >> ren delta) s).
    Proof.
      induction s in zeta, sigma, delta |-*; intros H; cbn.
      - reflexivity.
      - unfold funcomp; asimpl.
        rewrite idSubst_exp; eauto.
        intros y; unfold funcomp; cbn.
        rewrite H; reflexivity.
      - f_equal. erewrite IHs with (delta := 0 .: delta >> shift).
        2: intros []; cbn; unfold funcomp; eauto; rewrite H; reflexivity.
        f_equal; [| now asimpl].
        fext; intros []; cbn; eauto.
        unfold funcomp at 2.
        now rewrite ren_subst_consts_commute.
      - erewrite IHs1, IHs2; eauto.
    Qed.

    Global Instance step_subst_consts X Y:
      Proper (Logic.eq ++> step ++> step) (@subst_consts X Y).
    Proof.
      intros ? zeta -> s t H; induction H in zeta |-*; cbn; eauto.
      econstructor; subst; unfold beta.
      erewrite subst_const_comm with (delta := shift).
      f_equal. fext.
      all: intros []; cbn; eauto.
    Qed.

    Global Instance steps_subst_consts X Y:
      Proper (Logic.eq ++> star step ++> star step) (@subst_consts X Y).
    Proof.
      intros ? zeta -> s t H; induction H in zeta |-*; cbn; eauto; rewrite H; eauto.
    Qed.

    Global Instance equiv_subst_consts X Y:
      Proper (Logic.eq ++> equiv step ++> equiv step) (@subst_consts X Y).
    Proof.
      intros ? zeta -> s t [v [H1 H2]] % church_rosser; eauto;
        now rewrite H1, H2.
    Qed.

    Lemma subst_consts_consts X Y (zeta: X -> exp Y) (s: exp X):
      consts (subst_consts zeta s) === Consts (map zeta (consts s)).
    Proof.
      unfold Consts; induction s in zeta |-*; cbn; simplify; intuition.
      - rewrite IHs.
        unfold funcomp; rewrite <-map_map, !flat_map_concat_map, map_map.
        erewrite map_ext with (g := consts); intuition.
        now rewrite consts_ren.
      - rewrite IHs1, IHs2, !flat_map_concat_map; simplify.
        now rewrite concat_app.
    Qed.

    Lemma consts_in_subst_consts X Y (kappa: X -> exp Y) c s:
      c consts (subst_consts kappa s) -> exists d, d consts s /\ c consts (kappa d).
    Proof.
      rewrite subst_consts_consts.
      unfold Consts; rewrite in_flat_map; intros [e []]; mapinj.
      exists x; intuition.
    Qed.

    Lemma subst_consts_up Y Z (zeta: Y -> exp Z) (sigma: fin -> exp Y):
      up (sigma >> subst_consts zeta) = up sigma >> subst_consts (zeta >> ren shift).
    Proof.
      fext; intros []; cbn; eauto.
      unfold funcomp at 1 2.
      now rewrite <-ren_subst_consts_commute.
    Qed.

    Lemma subst_const_comm_id Y zeta sigma (s: exp Y):
      subst_consts zeta s = s ->
      (sigma >> subst_consts zeta) s = subst_consts zeta (sigma s).
    Proof.
      induction s in zeta, sigma |-*; cbn; eauto.
      - injection 1 as H. f_equal.
        rewrite <-IHs; eauto.
        now rewrite subst_consts_up.
      - injection 1 as H. f_equal; eauto.
    Qed.

    Lemma typing_constants X n Gamma s A :
      Gamma ⊢(n) s : A -> forall c, c consts s -> ord (ctype X c) <= S n.
    Proof.
      induction 1; cbn; intuition; subst; eauto.
      simplify in H1; intuition.
    Qed.

    Lemma typing_Consts X c n Gamma S' L:
      Gamma ⊢₊(n) S' : L -> c Consts S' -> ord (ctype X c) <= S n.
    Proof.
      induction 1; cbn; simplify; intuition eauto using typing_constants.
    Qed.

    Lemma preservation_consts X Y Gamma s A (zeta: X -> exp Y):
      Gamma s : A -> (forall x, x consts s -> Gamma zeta x : ctype X x) ->
      Gamma subst_consts zeta s : A.
    Proof.
      induction 1 in zeta |-*; cbn; eauto.
      - intros H'. econstructor. eapply IHtyping.
        intros; eapply preservation_under_renaming; eauto.
        intros ?; cbn; eauto.
      - intros H'. econstructor.
        eapply IHtyping1; intros ??; eapply H'; simplify; intuition.
        eapply IHtyping2; intros ??; eapply H'; simplify; intuition.
    Qed.

    Lemma ordertyping_preservation_consts X Y n Gamma s A (zeta: X -> exp Y):
      Gamma ⊢(n) s : A -> (forall x, x consts s -> Gamma ⊢(n) zeta x : ctype X x) ->
      Gamma ⊢(n) subst_consts zeta s : A.
    Proof.
      induction 1 in zeta |-*; cbn; eauto.
      - intros H'. econstructor. eapply IHordertyping.
        intros; eapply ordertyping_preservation_under_renaming; eauto.
        intros ?; cbn; eauto.
      - intros H'. econstructor.
        eapply IHordertyping1; intros ??; eapply H'; simplify; intuition.
        eapply IHordertyping2; intros ??; eapply H'; simplify; intuition.
    Qed.

    Lemma subst_consts_Lambda Y Z (zeta: Y -> exp Z) k s:
        subst_consts zeta (Lambda k s) = Lambda k (subst_consts (zeta >> ren (plus k)) s).
    Proof.
        induction k in zeta |-*; cbn; asimpl; eauto.
        f_equal. rewrite IHk. f_equal. f_equal.
        asimpl. fext; intros x; unfold funcomp; f_equal; fext; intros ?.
        unfold shift; simplify; f_equal; lia.
    Qed.

    Lemma subst_consts_AppL X Y (tau: X -> exp Y) S t:
        subst_consts tau (AppL S t) = AppL (map (subst_consts tau) S) (subst_consts tau t).
    Proof.
        induction S; cbn; congruence.
    Qed.

    Lemma subst_consts_AppR X Y (tau: X -> exp Y) s T:
        subst_consts tau (AppR s T) = AppR (subst_consts tau s) (map (subst_consts tau) T).
    Proof.
        induction T; cbn; congruence.
    Qed.

  End ConstantSubstitution.
End Constants.