(**************************************************************)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
(* ** Bitwise operations on nat *)
Require Import Arith Nat Lia List Bool Setoid.
From Undecidability.Shared.Libs.DLW.Utils
Require Import utils_tac utils_list utils_nat bool_list gcd sums power_decomp.
Set Implicit Arguments.
Local Notation power := (mscal mult 1).
Local Notation "∑" := (msum plus 0).
Local Reserved Notation "x ≲ y" (at level 70, no associativity).
(* if n and m are written in binary, LSB first:
n = n0 n1 n2 ...
m = m0 m1 m2 ...
then n ≲ m means forall any i, ni <= mi *)
Inductive binary_le : nat -> nat -> Prop :=
| in_ble_0 : forall n, 0 ≲ n
| in_ble_1 : forall n m, rem n 2 <= rem m 2 -> div n 2 ≲ div m 2 -> n ≲ m
where "x ≲ y" := (binary_le x y).
Local Infix "≲" := binary_le (at level 70, no associativity).
Fact binary_le_inv n m : n ≲ m -> n = 0 \/ div n 2 ≲ div m 2 /\ rem n 2 <= rem m 2.
Proof. inversion 1; auto. Qed.
Fact binary_le_refl x : x ≲ x.
Proof.
induction on x as IH with measure x.
destruct (eq_nat_dec x 0).
+ subst; constructor.
+ constructor 2; auto.
apply IH, div_by_p_lt; auto.
Qed.
Fact binary_le_le x y : x ≲ y -> x <= y.
Proof.
induction 1 as [ n | n m H1 H2 IH2 ]; try lia.
rewrite (div_rem_spec1 n 2), (div_rem_spec1 m 2); lia.
Qed.
Fact binary_le_zero_inv n : n ≲ 0 -> n = 0.
Proof. intros H; apply binary_le_le in H; lia. Qed.
Fact binary_le_zero n : 0 ≲ n.
Proof. constructor. Qed.
#[export] Hint Resolve binary_le_zero binary_le_refl : core.
Local Notation "⟘" := false.
Local Notation "⟙" := true.
Definition bool2nat x :=
match x with
| ⟘ => 0
| ⟙ => 1
end.
Fact rem_2_bool2nat b n : rem (bool2nat b+2*n) 2 = bool2nat b.
Proof.
destruct b; unfold bool2nat.
+ apply rem_2_fix_2.
+ apply rem_2_fix_1.
Qed.
Fact div_2_bool2nat b n : div (bool2nat b+2*n) 2 = n.
Proof.
destruct b; unfold bool2nat.
+ apply div_2_fix_2.
+ apply div_2_fix_1.
Qed.
Definition nat2bool x :=
match x with
| 0 => ⟘
| _ => ⟙
end.
Fact bool2nat2bool : forall x, x < 2 -> bool2nat (nat2bool x) = x.
Proof. intros [ | [ | ] ] ?; simpl; lia. Qed.
Fact nat2bool2nat : forall x, nat2bool (bool2nat x) = x.
Proof. intros []; auto. Qed.
Local Hint Resolve power2_gt_0 : core.
Local Notation lb := (list bool).
Local Infix "⪦" := Bool.le (at level 70, no associativity).
Local Infix "⪯" := lb_mask (at level 70, no associativity).
Local Infix "≂" := lb_mask_equiv (at level 70, no associativity).
Local Infix "⟂" := lb_ortho (at level 70, no associativity).
Local Infix "↓" := lb_meet (at level 40, left associativity).
Local Infix "↑" := lb_join (at level 41, left associativity).
Local Reserved Notation "'⟦' l '⟧'".
Local Reserved Notation "'⟬' x '⟭'".
(* Section lb_nat. *)
Fixpoint lb_nat (l : lb) :=
match l with
| nil => 0
| x :: l => bool2nat x + 2*⟦l⟧
end
where "⟦ l ⟧" := (lb_nat l).
Fact lb_nat_fix_0 : ⟦nil⟧ = 0. Proof. trivial. Qed.
Fact lb_nat_fix_1 l : ⟦⟘::l⟧ = 2*⟦l⟧. Proof. trivial. Qed.
Fact lb_nat_fix_2 l : ⟦⟙::l⟧ = 1+2*⟦l⟧. Proof. trivial. Qed.
Fact lb_nat_fix_3 x l : ⟦x::l⟧ = bool2nat x+2*⟦l⟧. Proof. trivial. Qed.
Fact lb_nat_app l m : lb_nat (l++m) = lb_nat l + (power (length l) 2)*(lb_nat m).
Proof.
induction l as [ | x l IHl ].
+ rewrite lb_nat_fix_0; simpl; lia.
+ simpl app; do 2 rewrite lb_nat_fix_3.
simpl length; rewrite power_S.
rewrite IHl; ring.
Qed.
Fact lb_mask_binary_le l m : l ⪯ m -> ⟦l⟧ ≲ ⟦m⟧.
Proof.
induction 1 as [ l | l H1 IH1 | x y l m H1 H2 IH2 ].
- constructor 1.
- apply binary_le_zero_inv in IH1.
simpl; rewrite IH1; constructor.
- do 2 rewrite lb_nat_fix_3.
constructor 2.
* do 2 rewrite rem_2_bool2nat.
revert x y H1; intros [] []; simpl; auto; discriminate.
* do 2 rewrite div_2_bool2nat; auto.
Qed.
Section nat_lb_def.
Inductive g_nlb : nat -> lb -> Prop :=
| in_gnlb_0 : g_nlb 0 nil
| in_gnlb_1 : forall n l, n <> 0 -> rem n 2 = 0 -> g_nlb (div n 2) l -> g_nlb n (⟘::l)
| in_gnlb_2 : forall n l, n <> 0 -> rem n 2 = 1 -> g_nlb (div n 2) l -> g_nlb n (⟙::l).
Fact g_nlb_fun n l1 l2 : g_nlb n l1 -> g_nlb n l2 -> l1 = l2.
Proof.
intros H1 H2; revert H1 l2 H2.
induction 1; inversion 1; auto; try lia; f_equal; auto.
Qed.
Let nat_lb_full n : { l | g_nlb n l }.
Proof.
induction on n as IHn with measure n.
destruct (eq_nat_dec n 0) as [ | Hn ].
+ exists nil; subst; constructor.
+ destruct (IHn (div n 2)) as (l & Hl).
* apply div_by_p_lt; lia.
* case_eq (rem n 2).
- intro; exists (⟘::l); constructor; auto.
- intro; exists (⟙::l); constructor; auto.
generalize (rem_2_lt n); lia.
Qed.
Definition nat_lb n := proj1_sig (nat_lb_full n).
Fact nat_lb_spec n : g_nlb n (nat_lb n).
Proof. apply (proj2_sig (nat_lb_full _)). Qed.
End nat_lb_def.
Local Notation "⟬ n ⟭" := (nat_lb n).
#[export] Hint Resolve nat_lb_spec : core.
Fact nat_lb_fix_0 : ⟬ 0⟭ = nil.
Proof. apply g_nlb_fun with 0; auto; constructor. Qed.
Fact nat_lb_fix_1 n : n <> 0 -> ⟬ 2*n⟭ = ⟘::⟬ n⟭ .
Proof.
intros Hn.
apply g_nlb_fun with (2*n); auto.
constructor; auto; try lia.
+ apply rem_2_fix_1.
+ rewrite div_2_fix_1; auto.
Qed.
Fact nat_lb_fix_2 n : ⟬1+2*n⟭ = ⟙::⟬ n⟭ .
Proof.
apply g_nlb_fun with (1+2*n); auto.
constructor; auto; try lia.
+ apply rem_2_fix_2.
+ rewrite div_2_fix_2; auto.
Qed.
Fact nat_lb_1 : ⟬ 1⟭ = ⟙::nil.
Proof.
change 1 with (1+2*0).
rewrite nat_lb_fix_2, nat_lb_fix_0.
trivial.
Qed.
Fact lb_nat_lb n : ⟦⟬ n ⟭⟧ = n.
Proof.
induction on n as IHn with measure n.
destruct (eq_nat_dec n 0) as [ | Hn ].
+ subst; rewrite nat_lb_fix_0; auto.
+ destruct (euclid_2 n) as (q & [ Hq | Hq ]); subst n.
* rewrite nat_lb_fix_1; try lia.
rewrite lb_nat_fix_1; f_equal.
apply IHn; lia.
* rewrite nat_lb_fix_2; try lia.
rewrite lb_nat_fix_2; do 2 f_equal.
apply IHn; lia.
Qed.
Fact nat_lb_length x n : x < power n 2 -> length ⟬ x ⟭ <= n.
Proof.
revert x; induction n as [ | n IHn ]; intros x.
+ rewrite power_0; intro; replace x with 0; try lia.
rewrite nat_lb_fix_0; simpl; lia.
+ rewrite power_S.
destruct (euclid_2 x) as (y & [ H | H ]); intros Hx; subst.
* destruct y.
- simpl; rewrite nat_lb_fix_0; simpl; lia.
- rewrite nat_lb_fix_1; try lia.
simpl; apply le_n_S, IHn; lia.
* rewrite nat_lb_fix_2; simpl.
apply le_n_S, IHn; lia.
Qed.
Fact binary_le_lb_mask x y : x ≲ y -> ⟬ x ⟭ ⪯ ⟬ y ⟭ .
Proof.
induction 1 as [ n | n m H1 H2 IH2 ].
+ rewrite nat_lb_fix_0; constructor.
+ destruct (eq_nat_dec n 0) as [ Hn | Hn ].
- subst; rewrite nat_lb_fix_0; constructor.
- assert (n <= m) as Hmn.
{ apply binary_le_le; constructor; auto. }
destruct (euclid_2_div n) as (G1 & [ G2 | G2 ] );
destruct (euclid_2_div m) as (G3 & [ G4 | G4 ] ); try lia.
* rewrite G1, G2, G3, G4, Nat.add_0_l, Nat.add_0_l.
do 2 (rewrite nat_lb_fix_1; [ | lia ]).
constructor; auto.
* rewrite G1, G2, G3, G4, Nat.add_0_l, nat_lb_fix_2.
rewrite nat_lb_fix_1; [ | lia ].
constructor; auto.
* rewrite G1, G2, G3, G4.
do 2 rewrite nat_lb_fix_2.
constructor; auto.
Qed.
#[export] Hint Resolve lb_mask_binary_le binary_le_lb_mask : core.
Section lb_mask_nat.
Let lb_mask_nat_1 l : ⟬ ⟦l⟧⟭ ⪯ l.
Proof.
induction l as [ | [|] l IHl ].
+ rewrite lb_nat_fix_0, nat_lb_fix_0; constructor.
+ rewrite lb_nat_fix_2, nat_lb_fix_2; constructor; auto.
+ rewrite lb_nat_fix_1.
destruct (eq_nat_dec ⟦l⟧ 0) as [ Hl | Hl ].
- rewrite Hl; simpl; rewrite nat_lb_fix_0; constructor.
- rewrite nat_lb_fix_1; auto; constructor; auto.
Qed.
Let lb_mask_nat_2 l : l ⪯ ⟬ ⟦l⟧⟭ .
Proof.
induction l as [ | [|] l IHl ].
+ constructor.
+ rewrite lb_nat_fix_2, nat_lb_fix_2; constructor; auto.
+ rewrite lb_nat_fix_1.
destruct (eq_nat_dec ⟦l⟧ 0) as [ Hl | Hl ].
- rewrite Hl; simpl; rewrite nat_lb_fix_0; constructor.
rewrite Hl, nat_lb_fix_0 in IHl; auto.
- rewrite nat_lb_fix_1; auto; constructor; auto.
Qed.
Fact lb_mask_nat l : ⟬ ⟦l⟧⟭ ≂ l.
Proof. split; auto. Qed.
End lb_mask_nat.
Definition nat_lb_nat := lb_mask_nat.
(* We have a correspondance *)
Lemma lb_mask_eq_binary_le l m : l ⪯ m <-> ⟦l⟧ ≲ ⟦m⟧.
Proof.
split; auto; intro.
rewrite <- (lb_mask_nat l), <- (lb_mask_nat m); auto.
Qed.
Lemma binary_le_eq_lb_mask x y : x ≲ y <-> ⟬ x⟭ ⪯ ⟬ y⟭ .
Proof.
split; auto.
intro; rewrite <- (lb_nat_lb x), <- (lb_nat_lb y); auto.
Qed.
#[export] Hint Resolve lb_mask_eq_binary_le binary_le_eq_lb_mask : core.
Fact binary_le_trans x y z : x ≲ y -> y ≲ z -> x ≲ z.
Proof.
do 3 rewrite binary_le_eq_lb_mask; apply lb_mask_trans.
Qed.
Fact lb_mask_equiv_equal l m : l ≂ m <-> ⟦l⟧ = ⟦m⟧.
Proof.
unfold lb_mask_equiv.
do 2 rewrite lb_mask_eq_binary_le; split.
+ intros (? & ?); apply le_antisym; apply binary_le_le; auto.
+ intros H; rewrite H; split; auto.
Qed.
Fact equal_lb_mask_equiv x y : x = y <-> ⟬ x⟭ ≂⟬ y⟭.
Proof.
rewrite lb_mask_equiv_equal, lb_nat_lb, lb_nat_lb; tauto.
Qed.
Local Notation lbeq := lb_mask_equiv (only parsing).
Add Parametric Morphism: (lb_nat) with signature (lbeq) ==> (eq) as lb_nat_eq.
Proof. apply lb_mask_equiv_equal. Qed.
(*
Hint Resolve dio_rel_binomial dio_rel_remainder.
Section binary_le_dio.
Let ble_equiv x y : x ≲ y <-> exists b, b = binomial y x /\ 1 = rem b 2.
Proof.
rewrite binary_le_binomial; split; eauto.
intros (? & ? & ?); subst; auto.
Qed.
Theorem binary_le_diophatine x y :
dio_expression x
-> dio_expression y
-> dio_rel (fun v => x v ≲ y v).
Proof.
intros.
apply dio_rel_equiv with (1 := fun v => ble_equiv (x v) (y v)).
dio_rel_auto.
Qed.
End binary_le_dio.
Definition lb_dio (R : (nat -> lb) -> Prop) := { f | forall v, df_pred f (fun n => ⟦v n⟧) <-> R v }.
Theorem lb_mask_diophantine x y : lb_dio (fun v => v x ⪯ v y).
Proof.
destruct (binary_le_diophatine (dio_expr_var x) (dio_expr_var y)) as (f & Hf).
exists f; intros v; rewrite Hf, lb_mask_eq_binary_le; tauto.
Qed.
*)
Definition bool_add_with_rem a b c : bool * bool :=
match a, b, c with
| ⟘, ⟘, ⟘ => (⟘,⟘)
| ⟘, ⟘, ⟙ => (⟘,⟙)
| ⟘, ⟙, ⟘ => (⟘,⟙)
| ⟘, ⟙, ⟙ => (⟙,⟘)
| ⟙, ⟘, ⟘ => (⟘,⟙)
| ⟙, ⟘, ⟙ => (⟙,⟘)
| ⟙, ⟙, ⟘ => (⟙,⟘)
| ⟙, ⟙, ⟙ => (⟙,⟙)
end.
Notation bin_add := bool_add_with_rem.
Fact bin_add_eq_00x x : bin_add ⟘ ⟘ x = (⟘,x).
Proof. destruct x; auto. Qed.
Fact bin_add_eq_0x0 x : bin_add ⟘ x ⟘ = (⟘,x).
Proof. destruct x; auto. Qed.
Fixpoint lb_succ a l :=
match l with
| nil => a::nil
| x::l => let (r,z) := bin_add ⟘ a x in z::lb_succ r l
end.
Fact lb_succ_spec_0 l : ⟦lb_succ ⟘ l⟧ = ⟦l⟧.
Proof.
induction l as [ | [] ]; simpl; auto.
Qed.
Fact lb_succ_spec_1 l : ⟦lb_succ ⟙ l⟧ = S ⟦l⟧.
Proof.
induction l as [ | [] ]; auto.
+ simpl lb_succ; rewrite lb_nat_fix_2.
rewrite lb_nat_fix_1, IHl; lia.
+ simpl lb_succ; rewrite lb_nat_fix_2.
rewrite lb_nat_fix_1, lb_succ_spec_0; lia.
Qed.
Fact lb_succ_spec a l : ⟦lb_succ a l⟧ = bool2nat a + ⟦l⟧.
Proof.
destruct a.
+ rewrite lb_succ_spec_1; auto.
+ rewrite lb_succ_spec_0; auto.
Qed.
Fact lb_succ_bot l : lb_succ ⟘ l ≂ l.
Proof.
induction l as [ | x ]; simpl; auto.
+ split; repeat constructor.
+ destruct x; rewrite IHl; auto.
Qed.
Fixpoint lb_plus a l m :=
match l, m with
| nil, m => lb_succ a m
| l, nil => lb_succ a l
| x::l, y::m => let (r,z) := bin_add a x y in z::lb_plus r l m
end.
Fact lb_plus_fix_0 a l : lb_plus a nil l = lb_succ a l.
Proof. auto. Qed.
Fact lb_plus_fix_1 a l : lb_plus a l nil = lb_succ a l.
Proof. destruct l; auto. Qed.
Fact lb_plus_fix_2 a x y l m : lb_plus a (x::l) (y::m) = let (r,z) := bin_add a x y in z::lb_plus r l m.
Proof. auto. Qed.
Fact lb_plus_spec a l m : ⟦lb_plus a l m⟧ = bool2nat a + ⟦l⟧ + ⟦m⟧.
Proof.
revert a m; induction l as [ | x l IHl ]; intros a m.
+ rewrite lb_plus_fix_0, lb_succ_spec, lb_nat_fix_0; lia.
+ destruct m as [ | y m ].
* rewrite lb_plus_fix_1, lb_succ_spec, lb_nat_fix_0; lia.
* rewrite lb_plus_fix_2, lb_nat_fix_3, lb_nat_fix_3.
destruct a; destruct x; destruct y; simpl; rewrite IHl; simpl; lia.
Qed.
Local Infix "⊕" := (lb_plus ⟘ ) (at level 41, left associativity).
Fact lb_plus_spec_0 l m : ⟦l⊕m⟧ = ⟦l⟧ + ⟦m⟧.
Proof. rewrite lb_plus_spec; simpl; auto. Qed.
Add Parametric Morphism a: (lb_plus a) with signature (lbeq) ==> (lbeq) ==> (lbeq) as lb_plus_eq.
Proof.
intros x1 y1 E1 x2 y2 E2; revert E1 E2.
do 3 rewrite lb_mask_equiv_equal.
do 2 rewrite lb_plus_spec.
intros; f_equal; auto.
Qed.
Fact lb_ortho_plus l m : l ⟂ m <-> l ⪯ l⊕m.
Proof.
split.
+ induction 1 as [ l | l | x y l m [ H1 | H1 ] H2 IH2 ].
* constructor.
* rewrite lb_plus_fix_1.
rewrite lb_mask_eq_binary_le, lb_succ_spec; simpl.
rewrite <- lb_mask_eq_binary_le; apply lb_mask_refl.
* rewrite lb_plus_fix_2.
subst x; rewrite bin_add_eq_00x.
destruct y; constructor; auto.
* rewrite lb_plus_fix_2.
subst y; rewrite bin_add_eq_0x0.
destruct x; constructor; auto.
+ revert m; induction l as [ | x l IHl ].
* intros; constructor.
* intros [ | y m ] H.
- constructor.
- rewrite lb_plus_fix_2 in H.
destruct x; destruct y; simpl in H; try (apply lb_mask_inv_cons_cons in H; tauto);
apply lb_mask_inv_cons, proj2 in H; constructor; auto.
Qed.
(*
Theorem lb_ortho_diophantine x y : lb_dio (fun v => v x ⟂ v y).
Proof.
destruct (@lb_mask_diophantine 0 1) as (f & Hf).
exists (df_subst (fun n => match n with 0 => de_var x | _ => de_add (de_var x) (de_var y) end) f).
intros v; rewrite df_pred_subst.
set (w z := match z with 0 => v x | _ => lb_plus ⟘ (v x) (v y) end).
rewrite df_pred_ext with (ω := fun n => ⟦ w n ⟧).
+ rewrite Hf; unfold w; symmetry; apply lb_ortho_plus.
+ intros | ; simpl; auto.
rewrite lb_plus_spec_0; auto.
Qed.
*)
Fact lb_ortho_plus_join x y : x ⟂ y -> x⊕y ≂ x↑y.
Proof.
induction 1 as [ m | l | x y l m H1 H2 IH2 ].
+ rewrite lb_plus_fix_0, lb_join_right; apply lb_succ_bot.
+ rewrite lb_plus_fix_1, lb_join_left; apply lb_succ_bot.
+ rewrite lb_join_cons.
apply lb_mask_equiv_equal.
rewrite lb_plus_spec_0.
do 3 rewrite lb_nat_fix_3.
rewrite lb_mask_equiv_equal in IH2.
rewrite <- IH2.
rewrite lb_plus_spec_0.
destruct x; destruct y; simpl; try ring.
destruct H1; discriminate.
Qed.
Fact lb_ortho_plus_id a x y : a ⟂ x -> a ⟂ y -> x ⟂ y <-> (a⊕x)↓(a⊕y) ≂ a.
Proof.
intros H1 H2.
do 2 (rewrite lb_ortho_plus_join; auto).
rewrite <- lb_join_meet_distr, lb_ortho_meet_nil.
split.
+ intros H3; rewrite H3, lb_join_left; auto.
+ intros H3; apply lb_ortho_mask_nil with a.
* revert H1; apply lb_ortho_anti; auto.
* rewrite <- H3, lb_join_comm; auto.
Qed.
(* A purely Boolean algebraic proof *)
Fact lb_minus_plus a b : a ⪯ b -> exists x, b ≂ a⊕x /\ a ⪯ a⊕x.
Proof.
intros H.
destruct lb_minus with (1 := H) as (x & H1 & H2).
exists x; rewrite lb_ortho_plus_join; auto.
Qed.
(* A diophantine representation of bitwise and *)
Theorem lb_meet_dio a b c : a ≂ b↓c <-> exists x y, b ≂ a⊕x /\ c ≂ a⊕y /\ a ⪯ a⊕x /\ a ⪯ a⊕y /\ x ⪯ x⊕y.
Proof.
split.
+ intros H.
destruct (@lb_minus_plus a b) as (x & H1 & H2).
{ rewrite H; auto. }
destruct (@lb_minus_plus a c) as (y & H3 & H4).
{ rewrite H; auto. }
exists x, y; repeat (split; auto).
rewrite <- lb_ortho_plus in H2, H4 |- *.
rewrite lb_ortho_plus_join in H1, H3; auto.
apply lb_ortho_meet_nil.
apply lb_ortho_mask_nil with (a := a).
- revert H4; apply lb_ortho_anti; auto.
- rewrite H, H1, H3.
apply lb_meet_mono; auto.
+ intros (x & y & H1 & H2 & H3 & H4 & H5).
rewrite <- lb_ortho_plus in H3, H4, H5.
rewrite H1, H2.
do 2 (rewrite lb_ortho_plus_join; auto).
rewrite <- lb_join_meet_distr.
rewrite lb_ortho_meet_nil in H5.
rewrite H5; rew lb.
Qed.
(* A diophantine representation of bitwise or *)
Fact lb_join_dio a b c : a ≂ b↑c <-> exists x, a ≂ b⊕x /\ b ⪯ b⊕x /\ x ⪯ c /\ c ⪯ a.
Proof.
split.
+ intros H.
destruct (@lb_minus_plus b a) as (x & H1 & H2).
{ rewrite H; auto. }
exists x; repeat (split; auto).
2: rewrite H; auto.
rewrite <- lb_ortho_plus in H2.
rewrite lb_ortho_plus_join in H1; auto.
rewrite lb_ortho_meet_nil in H2.
rewrite <- (lb_meet_join_idem x b), lb_join_comm.
rewrite <- H1, H, lb_meet_join_distr, (lb_meet_comm _ b), H2.
rew lb.
+ intros (x & H1 & H2 & H3 & H4).
rewrite <- lb_ortho_plus in H2.
rewrite lb_ortho_plus_join in H1; auto.
rewrite lb_ortho_meet_nil in H2.
split.
* rewrite H1; apply lb_join_mono; auto.
* apply lb_join_spec; auto; rewrite H1; auto.
Qed.
(* End lb_nat. *)
Fixpoint lb_bots n :=
match n with
| 0 => nil
| S n => ⟘ :: lb_bots n
end.
Definition lb_shift n l := lb_bots n ++ l.
Fact lb_shift_0 l : lb_shift 0 l = l.
Proof. auto. Qed.
Fact lb_shift_S n l : lb_shift (S n) l = ⟘ :: lb_shift n l.
Proof. auto. Qed.
Fact lb_nat_shift n l : ⟦lb_shift n l⟧ = ⟦l⟧*power n 2.
Proof.
unfold lb_shift.
induction n as [ | n IHn ]; simpl lb_bots.
+ rewrite power_0; simpl; ring.
+ simpl app; rewrite lb_nat_fix_1, IHn, power_S; ring.
Qed.
Fact lb_shift_meet n l m : lb_shift n (l↓m) = (lb_shift n l)↓(lb_shift n m).
Proof.
induction n as [ | n IHn ].
+ repeat rewrite lb_shift_0; auto.
+ do 3 rewrite lb_shift_S.
rewrite lb_meet_cons; f_equal; auto.
Qed.
Fact lb_shift_join n l m : lb_shift n (l↑m) = (lb_shift n l)↑(lb_shift n m).
Proof.
induction n as [ | n IHn ].
+ repeat rewrite lb_shift_0; auto.
+ do 3 rewrite lb_shift_S.
rewrite lb_join_cons; f_equal; auto.
Qed.
Fact lb_shift_ortho n l m : length l <= n -> l ⟂ lb_shift n m.
Proof.
revert n.
induction l as [ | x l IHl ]; intros [ | n ]; simpl; auto; try lia.
intro; rewrite lb_shift_S; constructor; auto; apply IHl; lia.
Qed.
Fact lb_shift_ortho_meet n l m : length l <= n -> l ↓ lb_shift n m ≂ nil.
Proof.
intros; apply lb_ortho_meet_nil, lb_shift_ortho; auto.
Qed.
Fact nat_pow2_lb_shift n q : ⟬q*power n 2⟭ ≂ lb_shift n ⟬q⟭ .
Proof.
apply lb_mask_equiv_equal.
rewrite lb_nat_lb, lb_nat_shift, lb_nat_lb; auto.
Qed.
Fact nat_euclid_pow2_lb n r q : r < power n 2 -> ⟬r+q*power n 2⟭ ≂ ⟬r⟭ ↑lb_shift n ⟬q⟭ .
Proof.
intros H.
apply lb_mask_equiv_equal.
rewrite lb_nat_lb.
rewrite <- lb_ortho_plus_join.
2: apply lb_shift_ortho, nat_lb_length; auto.
rewrite lb_plus_spec_0; f_equal.
+ rewrite lb_nat_lb; auto.
+ rewrite lb_nat_shift, lb_nat_lb; auto.
Qed.
Definition nat_meet n m := ⟦ ⟬n⟭↓⟬m⟭ ⟧.
Local Infix "⇣" := nat_meet (at level 40, left associativity).
Fact nat_meet_comm n m : n⇣m = m⇣n.
Proof.
apply lb_mask_equiv_equal.
rewrite lb_meet_comm; auto.
Qed.
Fact nat_meet_left n m : n⇣m ≲ n.
Proof.
apply binary_le_eq_lb_mask.
unfold nat_meet.
rewrite lb_mask_nat; auto.
Qed.
Fact nat_meet_right n m : n⇣m ≲ m.
Proof.
apply binary_le_eq_lb_mask.
unfold nat_meet.
rewrite lb_mask_nat; auto.
Qed.
#[export] Hint Resolve nat_meet_left nat_meet_right : core.
Fact binary_le_nat_meet n m : n ≲ m <-> n⇣m = n.
Proof.
rewrite equal_lb_mask_equiv.
rewrite binary_le_eq_lb_mask.
unfold nat_meet.
rewrite nat_lb_nat.
apply lb_mask_meet.
Qed.
Theorem nat_meet_dio a b c : a = b⇣c <-> exists x y, b = a+x
/\ c = a+y
/\ a ≲ a+x
/\ a ≲ a+y
/\ x ≲ x+y.
Proof.
unfold nat_meet.
rewrite equal_lb_mask_equiv, nat_lb_nat.
rewrite lb_meet_dio.
split; intros (x & y & H1 & H2 & H3 & H4 & H5).
+ exists ⟦x⟧, ⟦y⟧.
revert H1 H2 H3 H4 H5.
repeat rewrite lb_mask_equiv_equal.
repeat rewrite lb_mask_eq_binary_le.
repeat rewrite lb_plus_spec_0.
repeat rewrite lb_nat_lb; auto.
+ exists ⟬ x⟭, ⟬ y⟭ .
repeat rewrite lb_mask_equiv_equal.
repeat rewrite lb_mask_eq_binary_le.
rewrite H1, H2.
repeat rewrite lb_plus_spec_0.
repeat rewrite lb_nat_lb.
auto.
Qed.
(* This is how we compute the meet by division by powers of 2 *)
Lemma nat_meet_mult_power2 q x y : (x*power q 2) ⇣ (y*power q 2)
= (x⇣y)*power q 2.
Proof.
unfold nat_meet.
rewrite <- lb_nat_shift, lb_shift_meet.
apply lb_mask_equiv_equal.
do 2 rewrite nat_pow2_lb_shift; auto.
Qed.
Lemma nat_meet_euclid_power_2 q r1 d1 r2 d2 :
r1 < power q 2
-> r2 < power q 2
-> (r1+d1*power q 2) ⇣ (r2+d2*power q 2)
= (r1⇣r2) + (d1⇣d2)*power q 2.
Proof.
unfold nat_meet.
intros H1 H2.
do 2 (rewrite nat_euclid_pow2_lb; auto).
rewrite <- lb_nat_shift, <- lb_plus_spec_0.
apply lb_mask_equiv_equal.
rewrite lb_ortho_plus_join.
2: apply lb_shift_ortho, lb_meet_length_le; apply nat_lb_length; auto.
rewrite lb_shift_meet.
rewrite lb_meet_join_distr.
do 2 rewrite (lb_meet_comm (_↑_)).
do 2 rewrite lb_meet_join_distr.
rewrite lb_shift_ortho_meet; try (apply nat_lb_length; auto; fail).
rew lb.
rewrite (lb_meet_comm (lb_shift _ _)).
rewrite lb_shift_ortho_meet; try (apply nat_lb_length; auto; fail).
rew lb.
rewrite lb_meet_comm.
rewrite (lb_meet_comm (lb_shift _ _)); auto.
Qed.
Lemma nat_meet_euclid_2 r1 d1 r2 d2 :
r1 < 2
-> r2 < 2
-> (r1+2*d1) ⇣ (r2+2*d2)
= (r1⇣r2) + 2*(d1⇣d2).
Proof.
intros H1 H2.
do 3 rewrite (mult_comm 2).
apply nat_meet_euclid_power_2 with (q := 1); auto.
Qed.
Fact nat_meet_0n n : 0⇣n = 0.
Proof.
apply equal_lb_mask_equiv.
unfold nat_meet.
rewrite nat_lb_fix_0; rew lb.
apply nat_lb_nat.
Qed.
Fact nat_meet_n0 n : n⇣0 = 0.
Proof. rewrite nat_meet_comm, nat_meet_0n; auto. Qed.
Fact nat_meet_idem n : n⇣n = n.
Proof.
apply equal_lb_mask_equiv.
unfold nat_meet.
rewrite nat_lb_nat, lb_meet_idem; auto.
Qed.
#[export] Hint Resolve nat_meet_0n nat_meet_n0 nat_meet_idem : core.
Fact nat_meet_assoc n m k : n⇣(m⇣k) = n⇣m⇣k.
Proof.
apply equal_lb_mask_equiv; unfold nat_meet.
repeat rewrite nat_lb_nat.
rewrite lb_meet_assoc; auto.
Qed.
Section nat_meet_power2_neq.
Let nat_meet_power2_lt x y : x < y -> (power x 2) ⇣ (power y 2) = 0.
Proof.
intros H.
replace (power x 2) with (power x 2 + 0*power y 2) by ring.
replace (power y 2) with (0 + 1*power y 2) at 2 by ring.
rewrite nat_meet_euclid_power_2.
+ rewrite nat_meet_n0, nat_meet_0n; ring.
+ apply power_smono_l; lia.
+ apply power_ge_1; lia.
Qed.
Fact nat_meet_power2_neq x y : x <> y -> (power x 2) ⇣ (power y 2) = 0.
Proof.
intros H.
destruct (lt_eq_lt_dec x y) as [[]|]; try lia.
+ apply nat_meet_power2_lt; auto.
+ rewrite nat_meet_comm; apply nat_meet_power2_lt; auto.
Qed.
End nat_meet_power2_neq.
Fact nat_meet_12n n : 1⇣(2*n) = 0.
Proof.
replace 1 with (1+0*power 1 2) at 1 by auto.
replace (2*n) with (0+n*power 1 2) by (rewrite power_1; ring).
rewrite nat_meet_euclid_power_2; rewrite power_1; try lia.
rewrite nat_meet_0n, nat_meet_n0; auto.
Qed.
Fact nat_meet_12 : 1⇣2 = 0.
Proof. apply (nat_meet_12n 1). Qed.
Fact power_2_minus_1 n : power (S n) 2 - 1 = 1 + 2*(power n 2 - 1).
Proof.
rewrite power_S.
generalize (@power_ge_1 n 2); intros; lia.
Qed.
Fact power_2_minus_1_gt n x : x < power n 2 <-> x ≲ power n 2 - 1.
Proof.
split.
2: { intro Hx.
apply binary_le_le in Hx.
generalize (@power_ge_1 n 2); intros; lia. }
intros H1.
assert (x <= power n 2 -1) as H by lia; clear H1.
rewrite binary_le_nat_meet.
revert x H; induction n as [ | n IHn ]; intros x Hx.
+ rewrite power_0 in Hx; replace x with 0; auto; lia.
+ destruct (eq_nat_dec x 0) as [ H | H ].
- rewrite H; auto.
- destruct (euclid_2_div x) as (H1 & H2).
rewrite H1, power_2_minus_1.
rewrite nat_meet_euclid_2; try lia.
rewrite IHn.
* f_equal; destruct H2 as [ H2 | H2 ]; rewrite H2; auto.
* rewrite power_2_minus_1 in Hx; lia.
Qed.
Definition nat_join n m := ⟦ ⟬n⟭↑⟬m⟭ ⟧.
Local Infix "⇡" := nat_join (at level 50, left associativity).
Fact nat_join_comm n m : n⇡m = m⇡n.
Proof.
apply lb_mask_equiv_equal.
rewrite lb_join_comm; auto.
Qed.
Fact nat_join_left n m : n ≲ n⇡m.
Proof.
apply binary_le_eq_lb_mask.
unfold nat_join.
rewrite lb_mask_nat; auto.
Qed.
Fact nat_join_right n m : m ≲ n⇡m.
Proof.
apply binary_le_eq_lb_mask.
unfold nat_join.
rewrite lb_mask_nat; auto.
Qed.
#[export] Hint Resolve nat_join_left nat_join_right : core.
Fact nat_join_0n n : 0⇡n = n.
Proof.
apply equal_lb_mask_equiv.
unfold nat_join.
rewrite nat_lb_fix_0; rew lb.
apply nat_lb_nat.
Qed.
Fact nat_join_n0 n : n⇡0 = n.
Proof. rewrite nat_join_comm, nat_join_0n; auto. Qed.
Fact nat_join_idem n : n⇡n = n.
Proof.
apply equal_lb_mask_equiv.
unfold nat_join.
rewrite nat_lb_nat, lb_join_idem; auto.
Qed.
Fact nat_join_mono a b u v : a ≲ b -> u ≲ v -> a⇡u ≲ b⇡v.
Proof.
do 3 rewrite binary_le_eq_lb_mask; unfold nat_join.
do 2 rewrite nat_lb_nat.
apply lb_join_mono.
Qed.
Fact nat_join_assoc n m k : n⇡(m⇡k) = n⇡m⇡k.
Proof.
apply equal_lb_mask_equiv; unfold nat_join.
repeat rewrite nat_lb_nat.
rewrite lb_join_assoc; auto.
Qed.
Fact nat_join_meet_distr_l n m k : n⇡(m⇣k) = (n⇡m)⇣(n⇡k).
Proof.
apply equal_lb_mask_equiv.
unfold nat_join, nat_meet.
repeat rewrite nat_lb_nat.
rewrite lb_join_meet_distr; auto.
Qed.
Fact nat_meet_join_distr_l n m k : n⇣(m⇡k) = (n⇣m)⇡(n⇣k).
Proof.
apply equal_lb_mask_equiv.
unfold nat_join, nat_meet.
repeat rewrite nat_lb_nat.
rewrite lb_meet_join_distr; auto.
Qed.
#[export] Hint Resolve nat_join_0n nat_join_n0 nat_join_assoc : core.
Lemma nat_join_monoid : monoid_theory nat_join 0.
Proof. split; auto. Qed.
#[export] Hint Resolve nat_join_monoid nat_join_mono : core.
Fact nat_meet_joins_distr_l m n f : m ⇣ msum nat_join 0 n f = msum nat_join 0 n (fun i => m ⇣ f i).
Proof.
revert m f; induction n as [ | n IHn ]; intros m f.
+ do 2 rewrite msum_0; auto.
+ do 2 rewrite msum_S.
rewrite nat_meet_join_distr_l, IHn; auto.
Qed.
Fact nat_join_binary_le n m k : n⇡m ≲ k <-> n ≲ k /\ m ≲ k.
Proof.
split.
+ intros H; split; apply binary_le_trans with (2 := H); auto.
+ intros (H1 & H2). rewrite <- (nat_join_idem k); auto.
Qed.
Fact nat_joins_binary_le_left n f m : msum nat_join 0 n f ≲ m <-> forall i, i < n -> f i ≲ m.
Proof.
revert f; induction n as [ | n IHn ]; intros f.
+ rewrite msum_0; split; auto; intros; lia.
+ rewrite msum_S, nat_join_binary_le, IHn.
split.
* intros [H1 H2] [] ?; auto; apply H2; lia.
* intros H; split; intros; apply H; lia.
Qed.
Fact nat_joins_binary_le_right m n f : (exists i, i < n /\ m ≲ f i) -> m ≲ msum nat_join 0 n f.
Proof.
intros (i & H1 & H2).
apply binary_le_trans with (1 := H2).
clear m H2.
revert f i H1; induction n as [ | n IHn ]; intros f [ | i ] Hi; try lia; rewrite msum_S; auto.
apply binary_le_trans with (2 := nat_join_right _ _).
apply (IHn (fun i => f (S i))); lia.
Qed.
Fact nat_joins_binary_le n m f g :
(forall i, i < n -> exists j, j < m /\ f i ≲ g j)
-> msum nat_join 0 n f ≲ msum nat_join 0 m g.
Proof.
intros H.
rewrite nat_joins_binary_le_left.
intros i Hi; apply nat_joins_binary_le_right; auto.
Qed.
Fact nat_double_joins_binary_le n m f g :
(forall i j, j < i < n -> exists k, k < m /\ f i j ≲ g k)
-> msum nat_join 0 n (fun i => msum nat_join 0 i (f i)) ≲ msum nat_join 0 m g.
Proof.
intros H.
rewrite nat_joins_binary_le_left.
intros; apply nat_joins_binary_le; auto.
Qed.
Fact binary_le_join_inv m a b : m ≲ a⇡b -> m = (m⇣a)⇡(m⇣b).
Proof.
rewrite binary_le_nat_meet, nat_meet_join_distr_l; auto.
Qed.
Fact binary_le_joins_inv m n f : m ≲ msum nat_join 0 n f
-> { k : nat & { g : nat -> nat & { h | m = msum nat_join 0 k g
/\ k <= n
/\ (forall i, i < k -> g i <> 0 /\ g i ≲ f (h i))
/\ (forall i, i < k -> h i < n)
/\ (forall i j, i < j < k -> h i < h j) } } }.
Proof.
revert m f; induction n as [ | n IHn ]; intros m f H.
+ rewrite msum_0 in H; apply binary_le_zero_inv in H.
subst; exists 0, (fun _ => 0), (fun _ => 0); split.
- rewrite msum_0; auto.
- split; [ | split; [ | split ] ]; intros; lia.
+ rewrite msum_S in H.
apply binary_le_join_inv in H.
destruct (@IHn (m ⇣ msum nat_join 0 n (fun n => f (S n))) (fun n => f (S n)))
as (k & g & h & H1 & H0 & H2 & H3 & H4); auto.
rewrite H1 in H.
case_eq (m ⇣ f 0).
* intros E.
rewrite E, nat_join_0n in H.
exists k, g, (fun i => S (h i)); repeat (split; auto).
- intros i Hi; specialize (H3 _ Hi); lia.
- intros i j Hij; specialize (H4 _ _ Hij); lia.
* intros u Hu.
exists (S k), (fun i => match i with 0 => S u | S i => g i end),
(fun i => match i with 0 => 0 | S i => S (h i) end); split; [ | split; [ | split; [ | split ] ] ].
- rewrite H, msum_S, <- Hu; auto.
- lia.
- intros [ | i ]; split; try lia.
++ rewrite <- Hu; auto.
++ apply H2; lia.
++ apply H2; lia.
- intros [ | i ] Hi; try lia.
apply lt_S_n, H3 in Hi; lia.
- intros [ | i ] [ | j ] (G1 & G2); simpl; try lia.
apply lt_n_S, H4; lia.
Qed.
Fact binary_le_joins_inv' m n f : m ≲ msum nat_join 0 n f
-> { g | m = msum nat_join 0 n g /\ forall i, i < n -> g i ≲ f i }.
Proof.
intros H; exists (fun i => m⇣f i); split.
2: intros; auto.
apply binary_le_nat_meet in H.
rewrite <- H at 1.
apply nat_meet_joins_distr_l.
Qed.
(* This is how we compute the meet by division by powers of 2 *)
Lemma nat_join_mult_power2 q x y : (x*power q 2) ⇡ (y*power q 2)
= (x⇡y)*power q 2.
Proof.
unfold nat_join.
rewrite <- lb_nat_shift, lb_shift_join.
apply lb_mask_equiv_equal.
do 2 rewrite nat_pow2_lb_shift; auto.
Qed.
Lemma binary_le_mult_power2_inv m x q : m ≲ x * power q 2 -> m <> 0 -> { y | m = y * power q 2 /\ y <> 0 /\ y ≲ x }.
Proof.
intros H1 H2.
destruct (@euclid m (power q 2)) as (d & r & H3 & H4).
+ generalize (@power_ge_1 q 2); intros; lia.
+ apply binary_le_nat_meet in H1.
rewrite plus_comm in H3.
rewrite H3, <- (Nat.add_0_l (x*_)) in H1.
rewrite nat_meet_euclid_power_2 in H1; auto.
rewrite nat_meet_n0 in H1.
rewrite (plus_comm r), (plus_comm 0) in H1.
apply div_rem_uniq in H1; auto.
2: generalize (@power_ge_1 q 2); intros; lia.
destruct H1 as (H0 & H1).
subst r; simpl in H3.
exists d; split; auto.
split.
- contradict H2; subst; auto.
- rewrite <- H0; auto.
Qed.
Lemma nat_join_euclid2 q r1 d1 r2 d2 :
r1 < power q 2
-> r2 < power q 2
-> (r1+d1*power q 2) ⇡ (r2+d2*power q 2)
= (r1⇡r2) + (d1⇡d2)*power q 2.
Proof.
unfold nat_join.
intros H1 H2.
do 2 (rewrite nat_euclid_pow2_lb; auto).
rewrite <- lb_nat_shift, <- lb_plus_spec_0.
apply lb_mask_equiv_equal.
rewrite lb_ortho_plus_join.
2: apply lb_shift_ortho, lb_join_length_le; apply nat_lb_length; auto.
rewrite lb_shift_join.
rewrite lb_join_assoc, <- (lb_join_assoc ⟬ r1 ⟭).
rewrite (lb_join_comm _ ⟬ r2 ⟭).
repeat rewrite lb_join_assoc; auto.
Qed.
Fact nat_lb_plus n m : ⟬n+m⟭ ≂ ⟬n⟭⊕⟬m⟭.
Proof.
rewrite lb_mask_equiv_equal, lb_nat_lb, lb_plus_spec_0.
f_equal; symmetry; apply lb_nat_lb.
Qed.
Fact nat_ortho_plus_join n m : n⇣m = 0 -> n+m = n⇡m.
Proof.
do 2 rewrite equal_lb_mask_equiv.
unfold nat_meet, nat_join.
do 2 rewrite nat_lb_nat.
rewrite nat_lb_plus, nat_lb_fix_0.
rewrite <- lb_ortho_meet_nil.
apply lb_ortho_plus_join.
Qed.
Local Notation sum_powers := (fun r n f e => ∑ n (fun i => f i * power (e i) r)).
Fact sum_powers_bound r n f e :
r <> 0
-> (forall i, i < n -> f i < r)
-> (forall i j, i < j -> e i < e j)
-> sum_powers r n f e < power (e n) r.
Proof.
intros Hr; revert f e.
induction n as [ | n IHn ]; intros f e Hf He.
+ rewrite msum_0; apply power_ge_1; auto.
+ rewrite msum_plus1; auto.
apply lt_le_trans with (power (S (e n)) r).
2: apply power_mono_l; try lia; apply He; auto.
rewrite power_S.
apply lt_le_trans with (1*power (e n) r + f n * power (e n) r).
* rewrite Nat.mul_1_l; apply plus_lt_le_compat; auto.
* rewrite <- Nat.mul_add_distr_r; apply mult_le_compat; auto.
apply Hf; auto.
Qed.
Fact sum_powers_euclid r n f e : (forall j, j < n -> e 1 <= e (S j))
-> sum_powers r (S n) f e = f 0 * power (e 0) r
+ sum_powers r n (fun i => f (S i)) (fun i => e (S i) - e 1) * power (e 1) r.
Proof.
intros Hf; simpl; f_equal.
rewrite <- sum_0n_scal_r.
apply msum_ext.
intros i Hi.
rewrite <- mult_assoc; f_equal.
rewrite <- power_plus; f_equal.
generalize (Hf _ Hi); lia.
Qed.
Fact nat_meet_joins m n f : m⇣msum nat_join 0 n f = msum nat_join 0 n (fun i => m⇣f i).
Proof.
revert f; induction n as [ | n IHn ]; intros f.
+ rewrite msum_0, msum_0, nat_meet_n0; auto.
+ do 2 rewrite msum_S.
rewrite nat_meet_join_distr_l, IHn; auto.
Qed.
Fact nat_join_eq_0 n m : n⇡m = 0 <-> n = 0 /\ m = 0.
Proof.
split.
+ do 3 rewrite equal_lb_mask_equiv.
unfold nat_join; rewrite nat_lb_nat.
repeat rewrite nat_lb_fix_0.
apply lb_join_nil_eq.
+ intros []; subst; apply nat_join_0n.
Qed.
Fact nat_ortho_joins_left m n f : m⇣msum nat_join 0 n f = 0
<-> forall i, i < n -> m⇣f i = 0.
Proof.
rewrite nat_meet_joins.
revert f; induction n as [ | n IHn ]; intros f.
+ rewrite msum_0; split; auto; intros; lia.
+ rewrite msum_S, nat_join_eq_0, IHn.
split.
* intros [ H1 H2 ] [ | i ] ?; auto; apply H2; lia.
* intros H; split; intros; apply H; lia.
Qed.
Fact nat_ortho_sum_join n f : (forall i j, i <> j -> i < n -> j < n -> f i ⇣ f j = 0)
-> ∑ n f = msum nat_join 0 n f.
Proof.
revert f; induction n as [ | n IHn ]; intros f Hf.
+ do 2 rewrite msum_0; auto.
+ do 2 rewrite msum_S.
rewrite IHn.
apply nat_ortho_plus_join, nat_ortho_joins_left.
* intros; apply Hf; lia.
* intros; apply Hf; lia.
Qed.
Fact nat_ortho_joins m n f g : msum nat_join 0 m f ⇣ msum nat_join 0 n g = 0
<-> forall i j, i < m -> j < n -> f i ⇣ g j = 0.
Proof.
rewrite nat_ortho_joins_left.
split; intros H.
+ intros i j H1 H2; specialize (H _ H2).
rewrite nat_meet_comm in H |- *.
rewrite nat_ortho_joins_left in H; auto.
+ intros i Hi; rewrite nat_meet_comm, nat_ortho_joins_left.
intros j Hj; rewrite nat_meet_comm; auto.
Qed.
Local Notation "⇧" := (fun r n f e => msum nat_join 0 n (fun i => f i * power (e i) r)).
Section nat_meet_digits.
Variable (q : nat) (Hq : 0 < q) (r : nat) (Hr : r = power q 2).
Implicit Types (f g : nat -> nat).
Let Hr' : 2 <= r.
Proof. rewrite Hr; apply (@power_mono_l 1 _ 2); lia. Qed.
Fact nat_meet_powers_eq i a b : (a*power i r)⇣(b*power i r) = (a⇣b)*power i r.
Proof. rewrite Hr, <- power_mult, nat_meet_mult_power2; auto. Qed.
Fact binary_power_split i a : { u : nat & { v | a = u⇡(v*power i r) /\ forall k, u⇣(k*power i r) = 0 } }.
Proof.
destruct (@euclid a (power i r)) as (u & v & H1 & H2).
+ generalize (@power_ge_1 i r); intros; lia.
+ exists v, u.
assert (forall k, v ⇣ (k*power i r) = 0) as E.
{ intros k; replace v with (v+0*power i r) by ring.
replace (k*power i r) with (0+k*power i r) by ring.
rewrite Hr, <- power_mult.
rewrite nat_meet_euclid_power_2, nat_meet_0n, nat_meet_n0; auto.
rewrite power_mult, <- Hr; auto. }
split; auto.
rewrite H1, plus_comm, nat_ortho_plus_join; auto.
Qed.
Fact binary_le_power_inv i a b : a ≲ b * power i r -> { a' | a = a' * power i r /\ a' ≲ b }.
Proof.
intros H.
destruct (binary_power_split i a) as (u & v & H1 & H2).
exists (v⇣b).
rewrite binary_le_nat_meet in H.
rewrite H1 in H at 1.
rewrite nat_meet_comm, nat_meet_join_distr_l in H.
rewrite (nat_meet_comm _ u), H2, nat_join_0n, nat_meet_comm in H.
rewrite Hr, <- power_mult, nat_meet_mult_power2, power_mult, <- Hr in H.
split; auto.
Qed.
Section nat_meet_powers_neq.
Let nat_meet_neq_powers i j a b : i < j -> a < r -> b < r -> (a*power i r)⇣(b*power j r) = 0.
Proof.
intros H1 Ha Hb.
replace (a*power i r) with (a*power i r + 0*power j r) by ring.
replace (b*power j r) with (0+b*power j r) by ring.
rewrite Hr, <- power_mult, <- power_mult.
rewrite nat_meet_euclid_power_2.
+ rewrite nat_meet_n0, nat_meet_0n; ring.
+ do 2 rewrite power_mult; rewrite <- Hr.
apply lt_le_trans with (power (S i) r).
- rewrite power_S; apply mult_lt_compat_r; auto.
apply power_ge_1; lia.
- apply power_mono_l; lia.
+ rewrite power_mult, <- Hr.
apply power_ge_1; lia.
Qed.
Fact nat_meet_powers_neq i j a b : i <> j -> a < r -> b < r -> (a*power i r)⇣(b*power j r) = 0.
Proof.
intros Hij Ha Hb.
destruct (lt_eq_lt_dec i j) as [ [] | ]; try lia.
+ apply nat_meet_neq_powers; auto.
+ rewrite nat_meet_comm.
apply nat_meet_neq_powers; auto.
Qed.
End nat_meet_powers_neq.
Fact sum_powers_ortho n f e :
(forall i, i < n -> f i < r)
-> (forall i j, i < n -> j < n -> e i = e j -> i = j)
-> sum_powers r n f e = ⇧ r n f e.
Proof.
revert f e; induction n as [ | n IHn ]; intros f e H1 H2.
+ do 2 rewrite msum_0; auto.
+ rewrite msum_S.
rewrite IHn.
2: intros; apply H1; lia.
2: intros i j Hi Hj E; apply H2 in E; lia.
rewrite nat_ortho_plus_join.
* rewrite msum_S; auto.
* apply nat_ortho_joins_left.
intros i Hi.
apply nat_meet_powers_neq.
- intros E; apply H2 in E; lia.
- apply H1; lia.
- apply H1; lia.
Qed.
Section double_sum_powers_ortho.
Variable (n : nat) (f e : nat -> nat -> nat)
(Hf : forall i j, j < i < n -> f i j < r)
(He : forall i1 j1 i2 j2, j1 < i1 < n -> j2 < i2 < n -> e i1 j1 = e i2 j2 -> i1 = i2 /\ j1 = j2).
Let dsmpo_1 i : i < n -> sum_powers r i (f i) (e i) = ⇧ r i (f i) (e i).
Proof.
intros Hi; apply sum_powers_ortho.
+ intros; apply Hf; lia.
+ intros ? ? ? ?; apply He; lia.
Qed.
Fact double_sum_powers_ortho : ∑ n (fun i => sum_powers r i (f i) (e i)) = msum nat_join 0 n (fun i => ⇧ r i (f i) (e i)).
Proof.
rewrite nat_ortho_sum_join.
+ apply msum_ext; intros; apply dsmpo_1; auto.
+ intros; do 2 (rewrite dsmpo_1; auto).
apply nat_ortho_joins.
intros; apply nat_meet_powers_neq; auto.
intros E; apply He in E; lia.
Qed.
End double_sum_powers_ortho.
Fact sinc_injective n f : (forall i j, i < j < n -> f i < f j) -> forall i j, i < n -> j < n -> f i = f j -> i = j.
Proof.
intros Hf i j Hi Hj E.
destruct (lt_eq_lt_dec i j) as [ [] | ]; auto.
+ generalize (Hf i j); intros; lia.
+ generalize (Hf j i); intros; lia.
Qed.
#[local] Hint Resolve sinc_injective : core.
Section binary_le_meet_sum_powers.
Variable (n : nat) (f g e : nat -> nat)
(Hf : forall i, i < n -> f i < r)
(Hg : forall i, i < n -> g i < r)
(He : forall i j, i < j < n -> e i < e j).
Fact meet_sum_powers : (sum_powers r n f e)⇣(sum_powers r n g e)
= sum_powers r n (fun i => f i ⇣ g i) e.
Proof.
generalize (sinc_injective _ He); intros H0.
simpl; do 3 (rewrite sum_powers_ortho; auto).
rewrite nat_meet_joins.
+ apply msum_ext.
intros i Hi; rewrite nat_meet_comm.
rewrite nat_meet_joins.
rewrite msum_only_one with (i := i); auto.
* rewrite nat_meet_comm, Hr, <- power_mult.
apply nat_meet_mult_power2.
* intros j G1 G2; apply nat_meet_powers_neq; auto.
+ intros i Hi.
apply le_lt_trans with (2 := Hf Hi).
apply binary_le_le; auto.
Qed.
Fact binary_le_sum_powers : sum_powers r n f e ≲ sum_powers r n g e <-> forall i, i < n -> f i ≲ g i.
Proof.
rewrite binary_le_nat_meet, meet_sum_powers.
split.
+ intros E i Hi.
apply binary_le_nat_meet.
apply power_decomp_unique with (5 := E); auto.
intros j Hj; apply le_lt_trans with (2 := Hf Hj).
apply binary_le_le; auto.
+ intros H; apply msum_ext.
intros; f_equal; apply binary_le_nat_meet; auto.
Qed.
End binary_le_meet_sum_powers.
Fact sum_power_binary_lt p n f a :
0 < p <= q
-> (forall i j, i < j < n -> f i < f j)
-> (forall i, i < n -> a i < power p 2) -> ∑ n (fun i => a i * power (f i) r)
≲ (power p 2-1) * ∑ n (fun i => power (f i) r).
Proof.
intros H1 H2 H3.
generalize (sinc_injective _ H2); intros H4.
rewrite <- sum_0n_scal_l.
apply binary_le_nat_meet.
rewrite meet_sum_powers; auto.
2: intros i Hi; rewrite Hr; apply lt_le_trans with (1 := H3 _ Hi), power_mono_l; lia.
2: { rewrite Hr.
intros i Hi.
generalize (@power_ge_1 p 2); intro.
unfold lt.
replace (S (power p 2 -1)) with (power p 2); try lia.
apply power_mono_l; lia. }
apply msum_ext; intros i Hi; f_equal.
apply binary_le_nat_meet, power_2_minus_1_gt.
assert (a i < power p 2); try lia.
apply lt_le_trans with (1 := H3 _ Hi), power_mono_l; lia.
Qed.
Fact sum_powers_binary_le_inv n f e m :
(forall i, i < n -> f i < r)
-> (forall i j, i < j < n -> e i < e j)
-> m ≲ sum_powers r n f e
-> { k : nat &
{ g : nat -> nat &
{ h | m = sum_powers r k g (fun i => e (h i))
/\ k <= n
/\ (forall i, i < k -> g i <> 0 /\ g i ≲ f (h i))
/\ (forall i, i < k -> h i < n)
/\ (forall i j, i < j < k -> h i < h j) } } }.
Proof.
intros H1 H2 H3.
generalize (sinc_injective _ H2); intros H0.
simpl in H3; rewrite sum_powers_ortho in H3; auto.
apply binary_le_joins_inv in H3.
destruct H3 as (k & g & h & H4 & H10 & H5 & H6 & H7).
generalize (sinc_injective _ H7); intros H8.
assert (forall i, { a | i < k -> g i = a * power (e (h i)) r /\ a <> 0 /\ a ≲ f (h i) }) as H.
{ intros i.
destruct (le_lt_dec k i) as [ H | H ].
* exists 0; intros; lia.
* destruct (H5 _ H) as (G1 & G2).
rewrite Hr, <- power_mult in G2.
apply binary_le_mult_power2_inv in G2; auto.
destruct G2 as (a & G2 & G3 & G4).
rewrite power_mult, <- Hr in G2.
exists a; auto. }
set (g' := fun i => proj1_sig (H i)).
assert (Hg' : forall i, i < k -> g i = g' i * power (e (h i)) r /\ g' i <> 0 /\ g' i ≲ f (h i)).
{ intro i; apply (proj2_sig (H i)). }
generalize g' Hg'; clear H g' Hg'; intros g' Hg'.
exists k, g', h; split; [ | split; [ | split ] ]; auto.
- rewrite sum_powers_ortho, H4.
* apply msum_ext. intros; apply Hg'; auto.
* intros i Hi; apply le_lt_trans with (f (h i)).
+ apply binary_le_le, Hg'; auto.
+ apply H1, H6; auto.
* intros ? ? ? ? E; apply H0 in E; auto.
- intros; apply Hg'; auto.
Qed.
Fact binary_le_sum_powers_inv n f e m :
(forall i, i < n -> f i < r)
-> (forall i j, i < j < n -> e i < e j)
-> m ≲ sum_powers r n f e
-> { g | m = sum_powers r n g e /\ forall i, i < n -> g i ≲ f i }.
Proof.
intros H1 H2 H3.
generalize (sinc_injective _ H2); intros H0.
simpl in H3; rewrite sum_powers_ortho in H3; auto.
apply binary_le_joins_inv' in H3.
destruct H3 as (g & H3 & H4).
assert (forall i, i < n -> { h | g i = h * power (e i) r /\ h ≲ f i }) as h_full.
{ intros i Hi; apply binary_le_power_inv; auto. }
set (h := fun i => match le_lt_dec n i with left _ => 0 | right H => proj1_sig (h_full _ H) end).
assert (Hh : forall i, i < n -> g i = h i * power (e i) r /\ h i ≲ f i).
{ intros i Hi; unfold h; destruct (le_lt_dec n i) as [ | H' ]; try lia.
apply (proj2_sig (h_full _ H')). }
generalize h Hh; clear h_full h Hh; intros h Hh.
exists h; split; auto.
+ rewrite H3.
rewrite sum_powers_ortho; auto.
* apply msum_ext; intros; apply Hh; auto.
* intros i Hi; apply le_lt_trans with (2 := H1 _ Hi), binary_le_le, Hh; auto.
+ intros; apply Hh; auto.
Qed.
Fact sum_power_binary_lt_inv p n f e m :
0 < p <= q
-> (forall i j, i < j < n -> f i < f j)
-> (forall i j, i < j < n -> e i < e j)
-> m ≲ (power p 2-1) * ∑ n (fun i => power (f i) r)
-> exists a, m = ∑ n (fun i => a i * power (f i) r)
/\ forall i, i < n -> a i < power p 2.
Proof.
intros H1 H2 H3 H4.
rewrite <- sum_0n_scal_l in H4.
apply binary_le_sum_powers_inv in H4; auto.
+ destruct H4 as (a & H5 & H6).
exists a; split; auto.
intros i Hi; apply power_2_minus_1_gt; auto.
+ intros i Hi.
apply lt_le_trans with (power p 2).
- generalize (@power_ge_1 p 2); intros; lia.
- rewrite Hr; apply power_mono_l; lia.
Qed.
End nat_meet_digits.
(* End lb_nat. *)
(* Copyright Dominique Larchey-Wendling * *)
(* *)
(* * Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
(* ** Bitwise operations on nat *)
Require Import Arith Nat Lia List Bool Setoid.
From Undecidability.Shared.Libs.DLW.Utils
Require Import utils_tac utils_list utils_nat bool_list gcd sums power_decomp.
Set Implicit Arguments.
Local Notation power := (mscal mult 1).
Local Notation "∑" := (msum plus 0).
Local Reserved Notation "x ≲ y" (at level 70, no associativity).
(* if n and m are written in binary, LSB first:
n = n0 n1 n2 ...
m = m0 m1 m2 ...
then n ≲ m means forall any i, ni <= mi *)
Inductive binary_le : nat -> nat -> Prop :=
| in_ble_0 : forall n, 0 ≲ n
| in_ble_1 : forall n m, rem n 2 <= rem m 2 -> div n 2 ≲ div m 2 -> n ≲ m
where "x ≲ y" := (binary_le x y).
Local Infix "≲" := binary_le (at level 70, no associativity).
Fact binary_le_inv n m : n ≲ m -> n = 0 \/ div n 2 ≲ div m 2 /\ rem n 2 <= rem m 2.
Proof. inversion 1; auto. Qed.
Fact binary_le_refl x : x ≲ x.
Proof.
induction on x as IH with measure x.
destruct (eq_nat_dec x 0).
+ subst; constructor.
+ constructor 2; auto.
apply IH, div_by_p_lt; auto.
Qed.
Fact binary_le_le x y : x ≲ y -> x <= y.
Proof.
induction 1 as [ n | n m H1 H2 IH2 ]; try lia.
rewrite (div_rem_spec1 n 2), (div_rem_spec1 m 2); lia.
Qed.
Fact binary_le_zero_inv n : n ≲ 0 -> n = 0.
Proof. intros H; apply binary_le_le in H; lia. Qed.
Fact binary_le_zero n : 0 ≲ n.
Proof. constructor. Qed.
#[export] Hint Resolve binary_le_zero binary_le_refl : core.
Local Notation "⟘" := false.
Local Notation "⟙" := true.
Definition bool2nat x :=
match x with
| ⟘ => 0
| ⟙ => 1
end.
Fact rem_2_bool2nat b n : rem (bool2nat b+2*n) 2 = bool2nat b.
Proof.
destruct b; unfold bool2nat.
+ apply rem_2_fix_2.
+ apply rem_2_fix_1.
Qed.
Fact div_2_bool2nat b n : div (bool2nat b+2*n) 2 = n.
Proof.
destruct b; unfold bool2nat.
+ apply div_2_fix_2.
+ apply div_2_fix_1.
Qed.
Definition nat2bool x :=
match x with
| 0 => ⟘
| _ => ⟙
end.
Fact bool2nat2bool : forall x, x < 2 -> bool2nat (nat2bool x) = x.
Proof. intros [ | [ | ] ] ?; simpl; lia. Qed.
Fact nat2bool2nat : forall x, nat2bool (bool2nat x) = x.
Proof. intros []; auto. Qed.
Local Hint Resolve power2_gt_0 : core.
Local Notation lb := (list bool).
Local Infix "⪦" := Bool.le (at level 70, no associativity).
Local Infix "⪯" := lb_mask (at level 70, no associativity).
Local Infix "≂" := lb_mask_equiv (at level 70, no associativity).
Local Infix "⟂" := lb_ortho (at level 70, no associativity).
Local Infix "↓" := lb_meet (at level 40, left associativity).
Local Infix "↑" := lb_join (at level 41, left associativity).
Local Reserved Notation "'⟦' l '⟧'".
Local Reserved Notation "'⟬' x '⟭'".
(* Section lb_nat. *)
Fixpoint lb_nat (l : lb) :=
match l with
| nil => 0
| x :: l => bool2nat x + 2*⟦l⟧
end
where "⟦ l ⟧" := (lb_nat l).
Fact lb_nat_fix_0 : ⟦nil⟧ = 0. Proof. trivial. Qed.
Fact lb_nat_fix_1 l : ⟦⟘::l⟧ = 2*⟦l⟧. Proof. trivial. Qed.
Fact lb_nat_fix_2 l : ⟦⟙::l⟧ = 1+2*⟦l⟧. Proof. trivial. Qed.
Fact lb_nat_fix_3 x l : ⟦x::l⟧ = bool2nat x+2*⟦l⟧. Proof. trivial. Qed.
Fact lb_nat_app l m : lb_nat (l++m) = lb_nat l + (power (length l) 2)*(lb_nat m).
Proof.
induction l as [ | x l IHl ].
+ rewrite lb_nat_fix_0; simpl; lia.
+ simpl app; do 2 rewrite lb_nat_fix_3.
simpl length; rewrite power_S.
rewrite IHl; ring.
Qed.
Fact lb_mask_binary_le l m : l ⪯ m -> ⟦l⟧ ≲ ⟦m⟧.
Proof.
induction 1 as [ l | l H1 IH1 | x y l m H1 H2 IH2 ].
- constructor 1.
- apply binary_le_zero_inv in IH1.
simpl; rewrite IH1; constructor.
- do 2 rewrite lb_nat_fix_3.
constructor 2.
* do 2 rewrite rem_2_bool2nat.
revert x y H1; intros [] []; simpl; auto; discriminate.
* do 2 rewrite div_2_bool2nat; auto.
Qed.
Section nat_lb_def.
Inductive g_nlb : nat -> lb -> Prop :=
| in_gnlb_0 : g_nlb 0 nil
| in_gnlb_1 : forall n l, n <> 0 -> rem n 2 = 0 -> g_nlb (div n 2) l -> g_nlb n (⟘::l)
| in_gnlb_2 : forall n l, n <> 0 -> rem n 2 = 1 -> g_nlb (div n 2) l -> g_nlb n (⟙::l).
Fact g_nlb_fun n l1 l2 : g_nlb n l1 -> g_nlb n l2 -> l1 = l2.
Proof.
intros H1 H2; revert H1 l2 H2.
induction 1; inversion 1; auto; try lia; f_equal; auto.
Qed.
Let nat_lb_full n : { l | g_nlb n l }.
Proof.
induction on n as IHn with measure n.
destruct (eq_nat_dec n 0) as [ | Hn ].
+ exists nil; subst; constructor.
+ destruct (IHn (div n 2)) as (l & Hl).
* apply div_by_p_lt; lia.
* case_eq (rem n 2).
- intro; exists (⟘::l); constructor; auto.
- intro; exists (⟙::l); constructor; auto.
generalize (rem_2_lt n); lia.
Qed.
Definition nat_lb n := proj1_sig (nat_lb_full n).
Fact nat_lb_spec n : g_nlb n (nat_lb n).
Proof. apply (proj2_sig (nat_lb_full _)). Qed.
End nat_lb_def.
Local Notation "⟬ n ⟭" := (nat_lb n).
#[export] Hint Resolve nat_lb_spec : core.
Fact nat_lb_fix_0 : ⟬ 0⟭ = nil.
Proof. apply g_nlb_fun with 0; auto; constructor. Qed.
Fact nat_lb_fix_1 n : n <> 0 -> ⟬ 2*n⟭ = ⟘::⟬ n⟭ .
Proof.
intros Hn.
apply g_nlb_fun with (2*n); auto.
constructor; auto; try lia.
+ apply rem_2_fix_1.
+ rewrite div_2_fix_1; auto.
Qed.
Fact nat_lb_fix_2 n : ⟬1+2*n⟭ = ⟙::⟬ n⟭ .
Proof.
apply g_nlb_fun with (1+2*n); auto.
constructor; auto; try lia.
+ apply rem_2_fix_2.
+ rewrite div_2_fix_2; auto.
Qed.
Fact nat_lb_1 : ⟬ 1⟭ = ⟙::nil.
Proof.
change 1 with (1+2*0).
rewrite nat_lb_fix_2, nat_lb_fix_0.
trivial.
Qed.
Fact lb_nat_lb n : ⟦⟬ n ⟭⟧ = n.
Proof.
induction on n as IHn with measure n.
destruct (eq_nat_dec n 0) as [ | Hn ].
+ subst; rewrite nat_lb_fix_0; auto.
+ destruct (euclid_2 n) as (q & [ Hq | Hq ]); subst n.
* rewrite nat_lb_fix_1; try lia.
rewrite lb_nat_fix_1; f_equal.
apply IHn; lia.
* rewrite nat_lb_fix_2; try lia.
rewrite lb_nat_fix_2; do 2 f_equal.
apply IHn; lia.
Qed.
Fact nat_lb_length x n : x < power n 2 -> length ⟬ x ⟭ <= n.
Proof.
revert x; induction n as [ | n IHn ]; intros x.
+ rewrite power_0; intro; replace x with 0; try lia.
rewrite nat_lb_fix_0; simpl; lia.
+ rewrite power_S.
destruct (euclid_2 x) as (y & [ H | H ]); intros Hx; subst.
* destruct y.
- simpl; rewrite nat_lb_fix_0; simpl; lia.
- rewrite nat_lb_fix_1; try lia.
simpl; apply le_n_S, IHn; lia.
* rewrite nat_lb_fix_2; simpl.
apply le_n_S, IHn; lia.
Qed.
Fact binary_le_lb_mask x y : x ≲ y -> ⟬ x ⟭ ⪯ ⟬ y ⟭ .
Proof.
induction 1 as [ n | n m H1 H2 IH2 ].
+ rewrite nat_lb_fix_0; constructor.
+ destruct (eq_nat_dec n 0) as [ Hn | Hn ].
- subst; rewrite nat_lb_fix_0; constructor.
- assert (n <= m) as Hmn.
{ apply binary_le_le; constructor; auto. }
destruct (euclid_2_div n) as (G1 & [ G2 | G2 ] );
destruct (euclid_2_div m) as (G3 & [ G4 | G4 ] ); try lia.
* rewrite G1, G2, G3, G4, Nat.add_0_l, Nat.add_0_l.
do 2 (rewrite nat_lb_fix_1; [ | lia ]).
constructor; auto.
* rewrite G1, G2, G3, G4, Nat.add_0_l, nat_lb_fix_2.
rewrite nat_lb_fix_1; [ | lia ].
constructor; auto.
* rewrite G1, G2, G3, G4.
do 2 rewrite nat_lb_fix_2.
constructor; auto.
Qed.
#[export] Hint Resolve lb_mask_binary_le binary_le_lb_mask : core.
Section lb_mask_nat.
Let lb_mask_nat_1 l : ⟬ ⟦l⟧⟭ ⪯ l.
Proof.
induction l as [ | [|] l IHl ].
+ rewrite lb_nat_fix_0, nat_lb_fix_0; constructor.
+ rewrite lb_nat_fix_2, nat_lb_fix_2; constructor; auto.
+ rewrite lb_nat_fix_1.
destruct (eq_nat_dec ⟦l⟧ 0) as [ Hl | Hl ].
- rewrite Hl; simpl; rewrite nat_lb_fix_0; constructor.
- rewrite nat_lb_fix_1; auto; constructor; auto.
Qed.
Let lb_mask_nat_2 l : l ⪯ ⟬ ⟦l⟧⟭ .
Proof.
induction l as [ | [|] l IHl ].
+ constructor.
+ rewrite lb_nat_fix_2, nat_lb_fix_2; constructor; auto.
+ rewrite lb_nat_fix_1.
destruct (eq_nat_dec ⟦l⟧ 0) as [ Hl | Hl ].
- rewrite Hl; simpl; rewrite nat_lb_fix_0; constructor.
rewrite Hl, nat_lb_fix_0 in IHl; auto.
- rewrite nat_lb_fix_1; auto; constructor; auto.
Qed.
Fact lb_mask_nat l : ⟬ ⟦l⟧⟭ ≂ l.
Proof. split; auto. Qed.
End lb_mask_nat.
Definition nat_lb_nat := lb_mask_nat.
(* We have a correspondance *)
Lemma lb_mask_eq_binary_le l m : l ⪯ m <-> ⟦l⟧ ≲ ⟦m⟧.
Proof.
split; auto; intro.
rewrite <- (lb_mask_nat l), <- (lb_mask_nat m); auto.
Qed.
Lemma binary_le_eq_lb_mask x y : x ≲ y <-> ⟬ x⟭ ⪯ ⟬ y⟭ .
Proof.
split; auto.
intro; rewrite <- (lb_nat_lb x), <- (lb_nat_lb y); auto.
Qed.
#[export] Hint Resolve lb_mask_eq_binary_le binary_le_eq_lb_mask : core.
Fact binary_le_trans x y z : x ≲ y -> y ≲ z -> x ≲ z.
Proof.
do 3 rewrite binary_le_eq_lb_mask; apply lb_mask_trans.
Qed.
Fact lb_mask_equiv_equal l m : l ≂ m <-> ⟦l⟧ = ⟦m⟧.
Proof.
unfold lb_mask_equiv.
do 2 rewrite lb_mask_eq_binary_le; split.
+ intros (? & ?); apply le_antisym; apply binary_le_le; auto.
+ intros H; rewrite H; split; auto.
Qed.
Fact equal_lb_mask_equiv x y : x = y <-> ⟬ x⟭ ≂⟬ y⟭.
Proof.
rewrite lb_mask_equiv_equal, lb_nat_lb, lb_nat_lb; tauto.
Qed.
Local Notation lbeq := lb_mask_equiv (only parsing).
Add Parametric Morphism: (lb_nat) with signature (lbeq) ==> (eq) as lb_nat_eq.
Proof. apply lb_mask_equiv_equal. Qed.
(*
Hint Resolve dio_rel_binomial dio_rel_remainder.
Section binary_le_dio.
Let ble_equiv x y : x ≲ y <-> exists b, b = binomial y x /\ 1 = rem b 2.
Proof.
rewrite binary_le_binomial; split; eauto.
intros (? & ? & ?); subst; auto.
Qed.
Theorem binary_le_diophatine x y :
dio_expression x
-> dio_expression y
-> dio_rel (fun v => x v ≲ y v).
Proof.
intros.
apply dio_rel_equiv with (1 := fun v => ble_equiv (x v) (y v)).
dio_rel_auto.
Qed.
End binary_le_dio.
Definition lb_dio (R : (nat -> lb) -> Prop) := { f | forall v, df_pred f (fun n => ⟦v n⟧) <-> R v }.
Theorem lb_mask_diophantine x y : lb_dio (fun v => v x ⪯ v y).
Proof.
destruct (binary_le_diophatine (dio_expr_var x) (dio_expr_var y)) as (f & Hf).
exists f; intros v; rewrite Hf, lb_mask_eq_binary_le; tauto.
Qed.
*)
Definition bool_add_with_rem a b c : bool * bool :=
match a, b, c with
| ⟘, ⟘, ⟘ => (⟘,⟘)
| ⟘, ⟘, ⟙ => (⟘,⟙)
| ⟘, ⟙, ⟘ => (⟘,⟙)
| ⟘, ⟙, ⟙ => (⟙,⟘)
| ⟙, ⟘, ⟘ => (⟘,⟙)
| ⟙, ⟘, ⟙ => (⟙,⟘)
| ⟙, ⟙, ⟘ => (⟙,⟘)
| ⟙, ⟙, ⟙ => (⟙,⟙)
end.
Notation bin_add := bool_add_with_rem.
Fact bin_add_eq_00x x : bin_add ⟘ ⟘ x = (⟘,x).
Proof. destruct x; auto. Qed.
Fact bin_add_eq_0x0 x : bin_add ⟘ x ⟘ = (⟘,x).
Proof. destruct x; auto. Qed.
Fixpoint lb_succ a l :=
match l with
| nil => a::nil
| x::l => let (r,z) := bin_add ⟘ a x in z::lb_succ r l
end.
Fact lb_succ_spec_0 l : ⟦lb_succ ⟘ l⟧ = ⟦l⟧.
Proof.
induction l as [ | [] ]; simpl; auto.
Qed.
Fact lb_succ_spec_1 l : ⟦lb_succ ⟙ l⟧ = S ⟦l⟧.
Proof.
induction l as [ | [] ]; auto.
+ simpl lb_succ; rewrite lb_nat_fix_2.
rewrite lb_nat_fix_1, IHl; lia.
+ simpl lb_succ; rewrite lb_nat_fix_2.
rewrite lb_nat_fix_1, lb_succ_spec_0; lia.
Qed.
Fact lb_succ_spec a l : ⟦lb_succ a l⟧ = bool2nat a + ⟦l⟧.
Proof.
destruct a.
+ rewrite lb_succ_spec_1; auto.
+ rewrite lb_succ_spec_0; auto.
Qed.
Fact lb_succ_bot l : lb_succ ⟘ l ≂ l.
Proof.
induction l as [ | x ]; simpl; auto.
+ split; repeat constructor.
+ destruct x; rewrite IHl; auto.
Qed.
Fixpoint lb_plus a l m :=
match l, m with
| nil, m => lb_succ a m
| l, nil => lb_succ a l
| x::l, y::m => let (r,z) := bin_add a x y in z::lb_plus r l m
end.
Fact lb_plus_fix_0 a l : lb_plus a nil l = lb_succ a l.
Proof. auto. Qed.
Fact lb_plus_fix_1 a l : lb_plus a l nil = lb_succ a l.
Proof. destruct l; auto. Qed.
Fact lb_plus_fix_2 a x y l m : lb_plus a (x::l) (y::m) = let (r,z) := bin_add a x y in z::lb_plus r l m.
Proof. auto. Qed.
Fact lb_plus_spec a l m : ⟦lb_plus a l m⟧ = bool2nat a + ⟦l⟧ + ⟦m⟧.
Proof.
revert a m; induction l as [ | x l IHl ]; intros a m.
+ rewrite lb_plus_fix_0, lb_succ_spec, lb_nat_fix_0; lia.
+ destruct m as [ | y m ].
* rewrite lb_plus_fix_1, lb_succ_spec, lb_nat_fix_0; lia.
* rewrite lb_plus_fix_2, lb_nat_fix_3, lb_nat_fix_3.
destruct a; destruct x; destruct y; simpl; rewrite IHl; simpl; lia.
Qed.
Local Infix "⊕" := (lb_plus ⟘ ) (at level 41, left associativity).
Fact lb_plus_spec_0 l m : ⟦l⊕m⟧ = ⟦l⟧ + ⟦m⟧.
Proof. rewrite lb_plus_spec; simpl; auto. Qed.
Add Parametric Morphism a: (lb_plus a) with signature (lbeq) ==> (lbeq) ==> (lbeq) as lb_plus_eq.
Proof.
intros x1 y1 E1 x2 y2 E2; revert E1 E2.
do 3 rewrite lb_mask_equiv_equal.
do 2 rewrite lb_plus_spec.
intros; f_equal; auto.
Qed.
Fact lb_ortho_plus l m : l ⟂ m <-> l ⪯ l⊕m.
Proof.
split.
+ induction 1 as [ l | l | x y l m [ H1 | H1 ] H2 IH2 ].
* constructor.
* rewrite lb_plus_fix_1.
rewrite lb_mask_eq_binary_le, lb_succ_spec; simpl.
rewrite <- lb_mask_eq_binary_le; apply lb_mask_refl.
* rewrite lb_plus_fix_2.
subst x; rewrite bin_add_eq_00x.
destruct y; constructor; auto.
* rewrite lb_plus_fix_2.
subst y; rewrite bin_add_eq_0x0.
destruct x; constructor; auto.
+ revert m; induction l as [ | x l IHl ].
* intros; constructor.
* intros [ | y m ] H.
- constructor.
- rewrite lb_plus_fix_2 in H.
destruct x; destruct y; simpl in H; try (apply lb_mask_inv_cons_cons in H; tauto);
apply lb_mask_inv_cons, proj2 in H; constructor; auto.
Qed.
(*
Theorem lb_ortho_diophantine x y : lb_dio (fun v => v x ⟂ v y).
Proof.
destruct (@lb_mask_diophantine 0 1) as (f & Hf).
exists (df_subst (fun n => match n with 0 => de_var x | _ => de_add (de_var x) (de_var y) end) f).
intros v; rewrite df_pred_subst.
set (w z := match z with 0 => v x | _ => lb_plus ⟘ (v x) (v y) end).
rewrite df_pred_ext with (ω := fun n => ⟦ w n ⟧).
+ rewrite Hf; unfold w; symmetry; apply lb_ortho_plus.
+ intros | ; simpl; auto.
rewrite lb_plus_spec_0; auto.
Qed.
*)
Fact lb_ortho_plus_join x y : x ⟂ y -> x⊕y ≂ x↑y.
Proof.
induction 1 as [ m | l | x y l m H1 H2 IH2 ].
+ rewrite lb_plus_fix_0, lb_join_right; apply lb_succ_bot.
+ rewrite lb_plus_fix_1, lb_join_left; apply lb_succ_bot.
+ rewrite lb_join_cons.
apply lb_mask_equiv_equal.
rewrite lb_plus_spec_0.
do 3 rewrite lb_nat_fix_3.
rewrite lb_mask_equiv_equal in IH2.
rewrite <- IH2.
rewrite lb_plus_spec_0.
destruct x; destruct y; simpl; try ring.
destruct H1; discriminate.
Qed.
Fact lb_ortho_plus_id a x y : a ⟂ x -> a ⟂ y -> x ⟂ y <-> (a⊕x)↓(a⊕y) ≂ a.
Proof.
intros H1 H2.
do 2 (rewrite lb_ortho_plus_join; auto).
rewrite <- lb_join_meet_distr, lb_ortho_meet_nil.
split.
+ intros H3; rewrite H3, lb_join_left; auto.
+ intros H3; apply lb_ortho_mask_nil with a.
* revert H1; apply lb_ortho_anti; auto.
* rewrite <- H3, lb_join_comm; auto.
Qed.
(* A purely Boolean algebraic proof *)
Fact lb_minus_plus a b : a ⪯ b -> exists x, b ≂ a⊕x /\ a ⪯ a⊕x.
Proof.
intros H.
destruct lb_minus with (1 := H) as (x & H1 & H2).
exists x; rewrite lb_ortho_plus_join; auto.
Qed.
(* A diophantine representation of bitwise and *)
Theorem lb_meet_dio a b c : a ≂ b↓c <-> exists x y, b ≂ a⊕x /\ c ≂ a⊕y /\ a ⪯ a⊕x /\ a ⪯ a⊕y /\ x ⪯ x⊕y.
Proof.
split.
+ intros H.
destruct (@lb_minus_plus a b) as (x & H1 & H2).
{ rewrite H; auto. }
destruct (@lb_minus_plus a c) as (y & H3 & H4).
{ rewrite H; auto. }
exists x, y; repeat (split; auto).
rewrite <- lb_ortho_plus in H2, H4 |- *.
rewrite lb_ortho_plus_join in H1, H3; auto.
apply lb_ortho_meet_nil.
apply lb_ortho_mask_nil with (a := a).
- revert H4; apply lb_ortho_anti; auto.
- rewrite H, H1, H3.
apply lb_meet_mono; auto.
+ intros (x & y & H1 & H2 & H3 & H4 & H5).
rewrite <- lb_ortho_plus in H3, H4, H5.
rewrite H1, H2.
do 2 (rewrite lb_ortho_plus_join; auto).
rewrite <- lb_join_meet_distr.
rewrite lb_ortho_meet_nil in H5.
rewrite H5; rew lb.
Qed.
(* A diophantine representation of bitwise or *)
Fact lb_join_dio a b c : a ≂ b↑c <-> exists x, a ≂ b⊕x /\ b ⪯ b⊕x /\ x ⪯ c /\ c ⪯ a.
Proof.
split.
+ intros H.
destruct (@lb_minus_plus b a) as (x & H1 & H2).
{ rewrite H; auto. }
exists x; repeat (split; auto).
2: rewrite H; auto.
rewrite <- lb_ortho_plus in H2.
rewrite lb_ortho_plus_join in H1; auto.
rewrite lb_ortho_meet_nil in H2.
rewrite <- (lb_meet_join_idem x b), lb_join_comm.
rewrite <- H1, H, lb_meet_join_distr, (lb_meet_comm _ b), H2.
rew lb.
+ intros (x & H1 & H2 & H3 & H4).
rewrite <- lb_ortho_plus in H2.
rewrite lb_ortho_plus_join in H1; auto.
rewrite lb_ortho_meet_nil in H2.
split.
* rewrite H1; apply lb_join_mono; auto.
* apply lb_join_spec; auto; rewrite H1; auto.
Qed.
(* End lb_nat. *)
Fixpoint lb_bots n :=
match n with
| 0 => nil
| S n => ⟘ :: lb_bots n
end.
Definition lb_shift n l := lb_bots n ++ l.
Fact lb_shift_0 l : lb_shift 0 l = l.
Proof. auto. Qed.
Fact lb_shift_S n l : lb_shift (S n) l = ⟘ :: lb_shift n l.
Proof. auto. Qed.
Fact lb_nat_shift n l : ⟦lb_shift n l⟧ = ⟦l⟧*power n 2.
Proof.
unfold lb_shift.
induction n as [ | n IHn ]; simpl lb_bots.
+ rewrite power_0; simpl; ring.
+ simpl app; rewrite lb_nat_fix_1, IHn, power_S; ring.
Qed.
Fact lb_shift_meet n l m : lb_shift n (l↓m) = (lb_shift n l)↓(lb_shift n m).
Proof.
induction n as [ | n IHn ].
+ repeat rewrite lb_shift_0; auto.
+ do 3 rewrite lb_shift_S.
rewrite lb_meet_cons; f_equal; auto.
Qed.
Fact lb_shift_join n l m : lb_shift n (l↑m) = (lb_shift n l)↑(lb_shift n m).
Proof.
induction n as [ | n IHn ].
+ repeat rewrite lb_shift_0; auto.
+ do 3 rewrite lb_shift_S.
rewrite lb_join_cons; f_equal; auto.
Qed.
Fact lb_shift_ortho n l m : length l <= n -> l ⟂ lb_shift n m.
Proof.
revert n.
induction l as [ | x l IHl ]; intros [ | n ]; simpl; auto; try lia.
intro; rewrite lb_shift_S; constructor; auto; apply IHl; lia.
Qed.
Fact lb_shift_ortho_meet n l m : length l <= n -> l ↓ lb_shift n m ≂ nil.
Proof.
intros; apply lb_ortho_meet_nil, lb_shift_ortho; auto.
Qed.
Fact nat_pow2_lb_shift n q : ⟬q*power n 2⟭ ≂ lb_shift n ⟬q⟭ .
Proof.
apply lb_mask_equiv_equal.
rewrite lb_nat_lb, lb_nat_shift, lb_nat_lb; auto.
Qed.
Fact nat_euclid_pow2_lb n r q : r < power n 2 -> ⟬r+q*power n 2⟭ ≂ ⟬r⟭ ↑lb_shift n ⟬q⟭ .
Proof.
intros H.
apply lb_mask_equiv_equal.
rewrite lb_nat_lb.
rewrite <- lb_ortho_plus_join.
2: apply lb_shift_ortho, nat_lb_length; auto.
rewrite lb_plus_spec_0; f_equal.
+ rewrite lb_nat_lb; auto.
+ rewrite lb_nat_shift, lb_nat_lb; auto.
Qed.
Definition nat_meet n m := ⟦ ⟬n⟭↓⟬m⟭ ⟧.
Local Infix "⇣" := nat_meet (at level 40, left associativity).
Fact nat_meet_comm n m : n⇣m = m⇣n.
Proof.
apply lb_mask_equiv_equal.
rewrite lb_meet_comm; auto.
Qed.
Fact nat_meet_left n m : n⇣m ≲ n.
Proof.
apply binary_le_eq_lb_mask.
unfold nat_meet.
rewrite lb_mask_nat; auto.
Qed.
Fact nat_meet_right n m : n⇣m ≲ m.
Proof.
apply binary_le_eq_lb_mask.
unfold nat_meet.
rewrite lb_mask_nat; auto.
Qed.
#[export] Hint Resolve nat_meet_left nat_meet_right : core.
Fact binary_le_nat_meet n m : n ≲ m <-> n⇣m = n.
Proof.
rewrite equal_lb_mask_equiv.
rewrite binary_le_eq_lb_mask.
unfold nat_meet.
rewrite nat_lb_nat.
apply lb_mask_meet.
Qed.
Theorem nat_meet_dio a b c : a = b⇣c <-> exists x y, b = a+x
/\ c = a+y
/\ a ≲ a+x
/\ a ≲ a+y
/\ x ≲ x+y.
Proof.
unfold nat_meet.
rewrite equal_lb_mask_equiv, nat_lb_nat.
rewrite lb_meet_dio.
split; intros (x & y & H1 & H2 & H3 & H4 & H5).
+ exists ⟦x⟧, ⟦y⟧.
revert H1 H2 H3 H4 H5.
repeat rewrite lb_mask_equiv_equal.
repeat rewrite lb_mask_eq_binary_le.
repeat rewrite lb_plus_spec_0.
repeat rewrite lb_nat_lb; auto.
+ exists ⟬ x⟭, ⟬ y⟭ .
repeat rewrite lb_mask_equiv_equal.
repeat rewrite lb_mask_eq_binary_le.
rewrite H1, H2.
repeat rewrite lb_plus_spec_0.
repeat rewrite lb_nat_lb.
auto.
Qed.
(* This is how we compute the meet by division by powers of 2 *)
Lemma nat_meet_mult_power2 q x y : (x*power q 2) ⇣ (y*power q 2)
= (x⇣y)*power q 2.
Proof.
unfold nat_meet.
rewrite <- lb_nat_shift, lb_shift_meet.
apply lb_mask_equiv_equal.
do 2 rewrite nat_pow2_lb_shift; auto.
Qed.
Lemma nat_meet_euclid_power_2 q r1 d1 r2 d2 :
r1 < power q 2
-> r2 < power q 2
-> (r1+d1*power q 2) ⇣ (r2+d2*power q 2)
= (r1⇣r2) + (d1⇣d2)*power q 2.
Proof.
unfold nat_meet.
intros H1 H2.
do 2 (rewrite nat_euclid_pow2_lb; auto).
rewrite <- lb_nat_shift, <- lb_plus_spec_0.
apply lb_mask_equiv_equal.
rewrite lb_ortho_plus_join.
2: apply lb_shift_ortho, lb_meet_length_le; apply nat_lb_length; auto.
rewrite lb_shift_meet.
rewrite lb_meet_join_distr.
do 2 rewrite (lb_meet_comm (_↑_)).
do 2 rewrite lb_meet_join_distr.
rewrite lb_shift_ortho_meet; try (apply nat_lb_length; auto; fail).
rew lb.
rewrite (lb_meet_comm (lb_shift _ _)).
rewrite lb_shift_ortho_meet; try (apply nat_lb_length; auto; fail).
rew lb.
rewrite lb_meet_comm.
rewrite (lb_meet_comm (lb_shift _ _)); auto.
Qed.
Lemma nat_meet_euclid_2 r1 d1 r2 d2 :
r1 < 2
-> r2 < 2
-> (r1+2*d1) ⇣ (r2+2*d2)
= (r1⇣r2) + 2*(d1⇣d2).
Proof.
intros H1 H2.
do 3 rewrite (mult_comm 2).
apply nat_meet_euclid_power_2 with (q := 1); auto.
Qed.
Fact nat_meet_0n n : 0⇣n = 0.
Proof.
apply equal_lb_mask_equiv.
unfold nat_meet.
rewrite nat_lb_fix_0; rew lb.
apply nat_lb_nat.
Qed.
Fact nat_meet_n0 n : n⇣0 = 0.
Proof. rewrite nat_meet_comm, nat_meet_0n; auto. Qed.
Fact nat_meet_idem n : n⇣n = n.
Proof.
apply equal_lb_mask_equiv.
unfold nat_meet.
rewrite nat_lb_nat, lb_meet_idem; auto.
Qed.
#[export] Hint Resolve nat_meet_0n nat_meet_n0 nat_meet_idem : core.
Fact nat_meet_assoc n m k : n⇣(m⇣k) = n⇣m⇣k.
Proof.
apply equal_lb_mask_equiv; unfold nat_meet.
repeat rewrite nat_lb_nat.
rewrite lb_meet_assoc; auto.
Qed.
Section nat_meet_power2_neq.
Let nat_meet_power2_lt x y : x < y -> (power x 2) ⇣ (power y 2) = 0.
Proof.
intros H.
replace (power x 2) with (power x 2 + 0*power y 2) by ring.
replace (power y 2) with (0 + 1*power y 2) at 2 by ring.
rewrite nat_meet_euclid_power_2.
+ rewrite nat_meet_n0, nat_meet_0n; ring.
+ apply power_smono_l; lia.
+ apply power_ge_1; lia.
Qed.
Fact nat_meet_power2_neq x y : x <> y -> (power x 2) ⇣ (power y 2) = 0.
Proof.
intros H.
destruct (lt_eq_lt_dec x y) as [[]|]; try lia.
+ apply nat_meet_power2_lt; auto.
+ rewrite nat_meet_comm; apply nat_meet_power2_lt; auto.
Qed.
End nat_meet_power2_neq.
Fact nat_meet_12n n : 1⇣(2*n) = 0.
Proof.
replace 1 with (1+0*power 1 2) at 1 by auto.
replace (2*n) with (0+n*power 1 2) by (rewrite power_1; ring).
rewrite nat_meet_euclid_power_2; rewrite power_1; try lia.
rewrite nat_meet_0n, nat_meet_n0; auto.
Qed.
Fact nat_meet_12 : 1⇣2 = 0.
Proof. apply (nat_meet_12n 1). Qed.
Fact power_2_minus_1 n : power (S n) 2 - 1 = 1 + 2*(power n 2 - 1).
Proof.
rewrite power_S.
generalize (@power_ge_1 n 2); intros; lia.
Qed.
Fact power_2_minus_1_gt n x : x < power n 2 <-> x ≲ power n 2 - 1.
Proof.
split.
2: { intro Hx.
apply binary_le_le in Hx.
generalize (@power_ge_1 n 2); intros; lia. }
intros H1.
assert (x <= power n 2 -1) as H by lia; clear H1.
rewrite binary_le_nat_meet.
revert x H; induction n as [ | n IHn ]; intros x Hx.
+ rewrite power_0 in Hx; replace x with 0; auto; lia.
+ destruct (eq_nat_dec x 0) as [ H | H ].
- rewrite H; auto.
- destruct (euclid_2_div x) as (H1 & H2).
rewrite H1, power_2_minus_1.
rewrite nat_meet_euclid_2; try lia.
rewrite IHn.
* f_equal; destruct H2 as [ H2 | H2 ]; rewrite H2; auto.
* rewrite power_2_minus_1 in Hx; lia.
Qed.
Definition nat_join n m := ⟦ ⟬n⟭↑⟬m⟭ ⟧.
Local Infix "⇡" := nat_join (at level 50, left associativity).
Fact nat_join_comm n m : n⇡m = m⇡n.
Proof.
apply lb_mask_equiv_equal.
rewrite lb_join_comm; auto.
Qed.
Fact nat_join_left n m : n ≲ n⇡m.
Proof.
apply binary_le_eq_lb_mask.
unfold nat_join.
rewrite lb_mask_nat; auto.
Qed.
Fact nat_join_right n m : m ≲ n⇡m.
Proof.
apply binary_le_eq_lb_mask.
unfold nat_join.
rewrite lb_mask_nat; auto.
Qed.
#[export] Hint Resolve nat_join_left nat_join_right : core.
Fact nat_join_0n n : 0⇡n = n.
Proof.
apply equal_lb_mask_equiv.
unfold nat_join.
rewrite nat_lb_fix_0; rew lb.
apply nat_lb_nat.
Qed.
Fact nat_join_n0 n : n⇡0 = n.
Proof. rewrite nat_join_comm, nat_join_0n; auto. Qed.
Fact nat_join_idem n : n⇡n = n.
Proof.
apply equal_lb_mask_equiv.
unfold nat_join.
rewrite nat_lb_nat, lb_join_idem; auto.
Qed.
Fact nat_join_mono a b u v : a ≲ b -> u ≲ v -> a⇡u ≲ b⇡v.
Proof.
do 3 rewrite binary_le_eq_lb_mask; unfold nat_join.
do 2 rewrite nat_lb_nat.
apply lb_join_mono.
Qed.
Fact nat_join_assoc n m k : n⇡(m⇡k) = n⇡m⇡k.
Proof.
apply equal_lb_mask_equiv; unfold nat_join.
repeat rewrite nat_lb_nat.
rewrite lb_join_assoc; auto.
Qed.
Fact nat_join_meet_distr_l n m k : n⇡(m⇣k) = (n⇡m)⇣(n⇡k).
Proof.
apply equal_lb_mask_equiv.
unfold nat_join, nat_meet.
repeat rewrite nat_lb_nat.
rewrite lb_join_meet_distr; auto.
Qed.
Fact nat_meet_join_distr_l n m k : n⇣(m⇡k) = (n⇣m)⇡(n⇣k).
Proof.
apply equal_lb_mask_equiv.
unfold nat_join, nat_meet.
repeat rewrite nat_lb_nat.
rewrite lb_meet_join_distr; auto.
Qed.
#[export] Hint Resolve nat_join_0n nat_join_n0 nat_join_assoc : core.
Lemma nat_join_monoid : monoid_theory nat_join 0.
Proof. split; auto. Qed.
#[export] Hint Resolve nat_join_monoid nat_join_mono : core.
Fact nat_meet_joins_distr_l m n f : m ⇣ msum nat_join 0 n f = msum nat_join 0 n (fun i => m ⇣ f i).
Proof.
revert m f; induction n as [ | n IHn ]; intros m f.
+ do 2 rewrite msum_0; auto.
+ do 2 rewrite msum_S.
rewrite nat_meet_join_distr_l, IHn; auto.
Qed.
Fact nat_join_binary_le n m k : n⇡m ≲ k <-> n ≲ k /\ m ≲ k.
Proof.
split.
+ intros H; split; apply binary_le_trans with (2 := H); auto.
+ intros (H1 & H2). rewrite <- (nat_join_idem k); auto.
Qed.
Fact nat_joins_binary_le_left n f m : msum nat_join 0 n f ≲ m <-> forall i, i < n -> f i ≲ m.
Proof.
revert f; induction n as [ | n IHn ]; intros f.
+ rewrite msum_0; split; auto; intros; lia.
+ rewrite msum_S, nat_join_binary_le, IHn.
split.
* intros [H1 H2] [] ?; auto; apply H2; lia.
* intros H; split; intros; apply H; lia.
Qed.
Fact nat_joins_binary_le_right m n f : (exists i, i < n /\ m ≲ f i) -> m ≲ msum nat_join 0 n f.
Proof.
intros (i & H1 & H2).
apply binary_le_trans with (1 := H2).
clear m H2.
revert f i H1; induction n as [ | n IHn ]; intros f [ | i ] Hi; try lia; rewrite msum_S; auto.
apply binary_le_trans with (2 := nat_join_right _ _).
apply (IHn (fun i => f (S i))); lia.
Qed.
Fact nat_joins_binary_le n m f g :
(forall i, i < n -> exists j, j < m /\ f i ≲ g j)
-> msum nat_join 0 n f ≲ msum nat_join 0 m g.
Proof.
intros H.
rewrite nat_joins_binary_le_left.
intros i Hi; apply nat_joins_binary_le_right; auto.
Qed.
Fact nat_double_joins_binary_le n m f g :
(forall i j, j < i < n -> exists k, k < m /\ f i j ≲ g k)
-> msum nat_join 0 n (fun i => msum nat_join 0 i (f i)) ≲ msum nat_join 0 m g.
Proof.
intros H.
rewrite nat_joins_binary_le_left.
intros; apply nat_joins_binary_le; auto.
Qed.
Fact binary_le_join_inv m a b : m ≲ a⇡b -> m = (m⇣a)⇡(m⇣b).
Proof.
rewrite binary_le_nat_meet, nat_meet_join_distr_l; auto.
Qed.
Fact binary_le_joins_inv m n f : m ≲ msum nat_join 0 n f
-> { k : nat & { g : nat -> nat & { h | m = msum nat_join 0 k g
/\ k <= n
/\ (forall i, i < k -> g i <> 0 /\ g i ≲ f (h i))
/\ (forall i, i < k -> h i < n)
/\ (forall i j, i < j < k -> h i < h j) } } }.
Proof.
revert m f; induction n as [ | n IHn ]; intros m f H.
+ rewrite msum_0 in H; apply binary_le_zero_inv in H.
subst; exists 0, (fun _ => 0), (fun _ => 0); split.
- rewrite msum_0; auto.
- split; [ | split; [ | split ] ]; intros; lia.
+ rewrite msum_S in H.
apply binary_le_join_inv in H.
destruct (@IHn (m ⇣ msum nat_join 0 n (fun n => f (S n))) (fun n => f (S n)))
as (k & g & h & H1 & H0 & H2 & H3 & H4); auto.
rewrite H1 in H.
case_eq (m ⇣ f 0).
* intros E.
rewrite E, nat_join_0n in H.
exists k, g, (fun i => S (h i)); repeat (split; auto).
- intros i Hi; specialize (H3 _ Hi); lia.
- intros i j Hij; specialize (H4 _ _ Hij); lia.
* intros u Hu.
exists (S k), (fun i => match i with 0 => S u | S i => g i end),
(fun i => match i with 0 => 0 | S i => S (h i) end); split; [ | split; [ | split; [ | split ] ] ].
- rewrite H, msum_S, <- Hu; auto.
- lia.
- intros [ | i ]; split; try lia.
++ rewrite <- Hu; auto.
++ apply H2; lia.
++ apply H2; lia.
- intros [ | i ] Hi; try lia.
apply lt_S_n, H3 in Hi; lia.
- intros [ | i ] [ | j ] (G1 & G2); simpl; try lia.
apply lt_n_S, H4; lia.
Qed.
Fact binary_le_joins_inv' m n f : m ≲ msum nat_join 0 n f
-> { g | m = msum nat_join 0 n g /\ forall i, i < n -> g i ≲ f i }.
Proof.
intros H; exists (fun i => m⇣f i); split.
2: intros; auto.
apply binary_le_nat_meet in H.
rewrite <- H at 1.
apply nat_meet_joins_distr_l.
Qed.
(* This is how we compute the meet by division by powers of 2 *)
Lemma nat_join_mult_power2 q x y : (x*power q 2) ⇡ (y*power q 2)
= (x⇡y)*power q 2.
Proof.
unfold nat_join.
rewrite <- lb_nat_shift, lb_shift_join.
apply lb_mask_equiv_equal.
do 2 rewrite nat_pow2_lb_shift; auto.
Qed.
Lemma binary_le_mult_power2_inv m x q : m ≲ x * power q 2 -> m <> 0 -> { y | m = y * power q 2 /\ y <> 0 /\ y ≲ x }.
Proof.
intros H1 H2.
destruct (@euclid m (power q 2)) as (d & r & H3 & H4).
+ generalize (@power_ge_1 q 2); intros; lia.
+ apply binary_le_nat_meet in H1.
rewrite plus_comm in H3.
rewrite H3, <- (Nat.add_0_l (x*_)) in H1.
rewrite nat_meet_euclid_power_2 in H1; auto.
rewrite nat_meet_n0 in H1.
rewrite (plus_comm r), (plus_comm 0) in H1.
apply div_rem_uniq in H1; auto.
2: generalize (@power_ge_1 q 2); intros; lia.
destruct H1 as (H0 & H1).
subst r; simpl in H3.
exists d; split; auto.
split.
- contradict H2; subst; auto.
- rewrite <- H0; auto.
Qed.
Lemma nat_join_euclid2 q r1 d1 r2 d2 :
r1 < power q 2
-> r2 < power q 2
-> (r1+d1*power q 2) ⇡ (r2+d2*power q 2)
= (r1⇡r2) + (d1⇡d2)*power q 2.
Proof.
unfold nat_join.
intros H1 H2.
do 2 (rewrite nat_euclid_pow2_lb; auto).
rewrite <- lb_nat_shift, <- lb_plus_spec_0.
apply lb_mask_equiv_equal.
rewrite lb_ortho_plus_join.
2: apply lb_shift_ortho, lb_join_length_le; apply nat_lb_length; auto.
rewrite lb_shift_join.
rewrite lb_join_assoc, <- (lb_join_assoc ⟬ r1 ⟭).
rewrite (lb_join_comm _ ⟬ r2 ⟭).
repeat rewrite lb_join_assoc; auto.
Qed.
Fact nat_lb_plus n m : ⟬n+m⟭ ≂ ⟬n⟭⊕⟬m⟭.
Proof.
rewrite lb_mask_equiv_equal, lb_nat_lb, lb_plus_spec_0.
f_equal; symmetry; apply lb_nat_lb.
Qed.
Fact nat_ortho_plus_join n m : n⇣m = 0 -> n+m = n⇡m.
Proof.
do 2 rewrite equal_lb_mask_equiv.
unfold nat_meet, nat_join.
do 2 rewrite nat_lb_nat.
rewrite nat_lb_plus, nat_lb_fix_0.
rewrite <- lb_ortho_meet_nil.
apply lb_ortho_plus_join.
Qed.
Local Notation sum_powers := (fun r n f e => ∑ n (fun i => f i * power (e i) r)).
Fact sum_powers_bound r n f e :
r <> 0
-> (forall i, i < n -> f i < r)
-> (forall i j, i < j -> e i < e j)
-> sum_powers r n f e < power (e n) r.
Proof.
intros Hr; revert f e.
induction n as [ | n IHn ]; intros f e Hf He.
+ rewrite msum_0; apply power_ge_1; auto.
+ rewrite msum_plus1; auto.
apply lt_le_trans with (power (S (e n)) r).
2: apply power_mono_l; try lia; apply He; auto.
rewrite power_S.
apply lt_le_trans with (1*power (e n) r + f n * power (e n) r).
* rewrite Nat.mul_1_l; apply plus_lt_le_compat; auto.
* rewrite <- Nat.mul_add_distr_r; apply mult_le_compat; auto.
apply Hf; auto.
Qed.
Fact sum_powers_euclid r n f e : (forall j, j < n -> e 1 <= e (S j))
-> sum_powers r (S n) f e = f 0 * power (e 0) r
+ sum_powers r n (fun i => f (S i)) (fun i => e (S i) - e 1) * power (e 1) r.
Proof.
intros Hf; simpl; f_equal.
rewrite <- sum_0n_scal_r.
apply msum_ext.
intros i Hi.
rewrite <- mult_assoc; f_equal.
rewrite <- power_plus; f_equal.
generalize (Hf _ Hi); lia.
Qed.
Fact nat_meet_joins m n f : m⇣msum nat_join 0 n f = msum nat_join 0 n (fun i => m⇣f i).
Proof.
revert f; induction n as [ | n IHn ]; intros f.
+ rewrite msum_0, msum_0, nat_meet_n0; auto.
+ do 2 rewrite msum_S.
rewrite nat_meet_join_distr_l, IHn; auto.
Qed.
Fact nat_join_eq_0 n m : n⇡m = 0 <-> n = 0 /\ m = 0.
Proof.
split.
+ do 3 rewrite equal_lb_mask_equiv.
unfold nat_join; rewrite nat_lb_nat.
repeat rewrite nat_lb_fix_0.
apply lb_join_nil_eq.
+ intros []; subst; apply nat_join_0n.
Qed.
Fact nat_ortho_joins_left m n f : m⇣msum nat_join 0 n f = 0
<-> forall i, i < n -> m⇣f i = 0.
Proof.
rewrite nat_meet_joins.
revert f; induction n as [ | n IHn ]; intros f.
+ rewrite msum_0; split; auto; intros; lia.
+ rewrite msum_S, nat_join_eq_0, IHn.
split.
* intros [ H1 H2 ] [ | i ] ?; auto; apply H2; lia.
* intros H; split; intros; apply H; lia.
Qed.
Fact nat_ortho_sum_join n f : (forall i j, i <> j -> i < n -> j < n -> f i ⇣ f j = 0)
-> ∑ n f = msum nat_join 0 n f.
Proof.
revert f; induction n as [ | n IHn ]; intros f Hf.
+ do 2 rewrite msum_0; auto.
+ do 2 rewrite msum_S.
rewrite IHn.
apply nat_ortho_plus_join, nat_ortho_joins_left.
* intros; apply Hf; lia.
* intros; apply Hf; lia.
Qed.
Fact nat_ortho_joins m n f g : msum nat_join 0 m f ⇣ msum nat_join 0 n g = 0
<-> forall i j, i < m -> j < n -> f i ⇣ g j = 0.
Proof.
rewrite nat_ortho_joins_left.
split; intros H.
+ intros i j H1 H2; specialize (H _ H2).
rewrite nat_meet_comm in H |- *.
rewrite nat_ortho_joins_left in H; auto.
+ intros i Hi; rewrite nat_meet_comm, nat_ortho_joins_left.
intros j Hj; rewrite nat_meet_comm; auto.
Qed.
Local Notation "⇧" := (fun r n f e => msum nat_join 0 n (fun i => f i * power (e i) r)).
Section nat_meet_digits.
Variable (q : nat) (Hq : 0 < q) (r : nat) (Hr : r = power q 2).
Implicit Types (f g : nat -> nat).
Let Hr' : 2 <= r.
Proof. rewrite Hr; apply (@power_mono_l 1 _ 2); lia. Qed.
Fact nat_meet_powers_eq i a b : (a*power i r)⇣(b*power i r) = (a⇣b)*power i r.
Proof. rewrite Hr, <- power_mult, nat_meet_mult_power2; auto. Qed.
Fact binary_power_split i a : { u : nat & { v | a = u⇡(v*power i r) /\ forall k, u⇣(k*power i r) = 0 } }.
Proof.
destruct (@euclid a (power i r)) as (u & v & H1 & H2).
+ generalize (@power_ge_1 i r); intros; lia.
+ exists v, u.
assert (forall k, v ⇣ (k*power i r) = 0) as E.
{ intros k; replace v with (v+0*power i r) by ring.
replace (k*power i r) with (0+k*power i r) by ring.
rewrite Hr, <- power_mult.
rewrite nat_meet_euclid_power_2, nat_meet_0n, nat_meet_n0; auto.
rewrite power_mult, <- Hr; auto. }
split; auto.
rewrite H1, plus_comm, nat_ortho_plus_join; auto.
Qed.
Fact binary_le_power_inv i a b : a ≲ b * power i r -> { a' | a = a' * power i r /\ a' ≲ b }.
Proof.
intros H.
destruct (binary_power_split i a) as (u & v & H1 & H2).
exists (v⇣b).
rewrite binary_le_nat_meet in H.
rewrite H1 in H at 1.
rewrite nat_meet_comm, nat_meet_join_distr_l in H.
rewrite (nat_meet_comm _ u), H2, nat_join_0n, nat_meet_comm in H.
rewrite Hr, <- power_mult, nat_meet_mult_power2, power_mult, <- Hr in H.
split; auto.
Qed.
Section nat_meet_powers_neq.
Let nat_meet_neq_powers i j a b : i < j -> a < r -> b < r -> (a*power i r)⇣(b*power j r) = 0.
Proof.
intros H1 Ha Hb.
replace (a*power i r) with (a*power i r + 0*power j r) by ring.
replace (b*power j r) with (0+b*power j r) by ring.
rewrite Hr, <- power_mult, <- power_mult.
rewrite nat_meet_euclid_power_2.
+ rewrite nat_meet_n0, nat_meet_0n; ring.
+ do 2 rewrite power_mult; rewrite <- Hr.
apply lt_le_trans with (power (S i) r).
- rewrite power_S; apply mult_lt_compat_r; auto.
apply power_ge_1; lia.
- apply power_mono_l; lia.
+ rewrite power_mult, <- Hr.
apply power_ge_1; lia.
Qed.
Fact nat_meet_powers_neq i j a b : i <> j -> a < r -> b < r -> (a*power i r)⇣(b*power j r) = 0.
Proof.
intros Hij Ha Hb.
destruct (lt_eq_lt_dec i j) as [ [] | ]; try lia.
+ apply nat_meet_neq_powers; auto.
+ rewrite nat_meet_comm.
apply nat_meet_neq_powers; auto.
Qed.
End nat_meet_powers_neq.
Fact sum_powers_ortho n f e :
(forall i, i < n -> f i < r)
-> (forall i j, i < n -> j < n -> e i = e j -> i = j)
-> sum_powers r n f e = ⇧ r n f e.
Proof.
revert f e; induction n as [ | n IHn ]; intros f e H1 H2.
+ do 2 rewrite msum_0; auto.
+ rewrite msum_S.
rewrite IHn.
2: intros; apply H1; lia.
2: intros i j Hi Hj E; apply H2 in E; lia.
rewrite nat_ortho_plus_join.
* rewrite msum_S; auto.
* apply nat_ortho_joins_left.
intros i Hi.
apply nat_meet_powers_neq.
- intros E; apply H2 in E; lia.
- apply H1; lia.
- apply H1; lia.
Qed.
Section double_sum_powers_ortho.
Variable (n : nat) (f e : nat -> nat -> nat)
(Hf : forall i j, j < i < n -> f i j < r)
(He : forall i1 j1 i2 j2, j1 < i1 < n -> j2 < i2 < n -> e i1 j1 = e i2 j2 -> i1 = i2 /\ j1 = j2).
Let dsmpo_1 i : i < n -> sum_powers r i (f i) (e i) = ⇧ r i (f i) (e i).
Proof.
intros Hi; apply sum_powers_ortho.
+ intros; apply Hf; lia.
+ intros ? ? ? ?; apply He; lia.
Qed.
Fact double_sum_powers_ortho : ∑ n (fun i => sum_powers r i (f i) (e i)) = msum nat_join 0 n (fun i => ⇧ r i (f i) (e i)).
Proof.
rewrite nat_ortho_sum_join.
+ apply msum_ext; intros; apply dsmpo_1; auto.
+ intros; do 2 (rewrite dsmpo_1; auto).
apply nat_ortho_joins.
intros; apply nat_meet_powers_neq; auto.
intros E; apply He in E; lia.
Qed.
End double_sum_powers_ortho.
Fact sinc_injective n f : (forall i j, i < j < n -> f i < f j) -> forall i j, i < n -> j < n -> f i = f j -> i = j.
Proof.
intros Hf i j Hi Hj E.
destruct (lt_eq_lt_dec i j) as [ [] | ]; auto.
+ generalize (Hf i j); intros; lia.
+ generalize (Hf j i); intros; lia.
Qed.
#[local] Hint Resolve sinc_injective : core.
Section binary_le_meet_sum_powers.
Variable (n : nat) (f g e : nat -> nat)
(Hf : forall i, i < n -> f i < r)
(Hg : forall i, i < n -> g i < r)
(He : forall i j, i < j < n -> e i < e j).
Fact meet_sum_powers : (sum_powers r n f e)⇣(sum_powers r n g e)
= sum_powers r n (fun i => f i ⇣ g i) e.
Proof.
generalize (sinc_injective _ He); intros H0.
simpl; do 3 (rewrite sum_powers_ortho; auto).
rewrite nat_meet_joins.
+ apply msum_ext.
intros i Hi; rewrite nat_meet_comm.
rewrite nat_meet_joins.
rewrite msum_only_one with (i := i); auto.
* rewrite nat_meet_comm, Hr, <- power_mult.
apply nat_meet_mult_power2.
* intros j G1 G2; apply nat_meet_powers_neq; auto.
+ intros i Hi.
apply le_lt_trans with (2 := Hf Hi).
apply binary_le_le; auto.
Qed.
Fact binary_le_sum_powers : sum_powers r n f e ≲ sum_powers r n g e <-> forall i, i < n -> f i ≲ g i.
Proof.
rewrite binary_le_nat_meet, meet_sum_powers.
split.
+ intros E i Hi.
apply binary_le_nat_meet.
apply power_decomp_unique with (5 := E); auto.
intros j Hj; apply le_lt_trans with (2 := Hf Hj).
apply binary_le_le; auto.
+ intros H; apply msum_ext.
intros; f_equal; apply binary_le_nat_meet; auto.
Qed.
End binary_le_meet_sum_powers.
Fact sum_power_binary_lt p n f a :
0 < p <= q
-> (forall i j, i < j < n -> f i < f j)
-> (forall i, i < n -> a i < power p 2) -> ∑ n (fun i => a i * power (f i) r)
≲ (power p 2-1) * ∑ n (fun i => power (f i) r).
Proof.
intros H1 H2 H3.
generalize (sinc_injective _ H2); intros H4.
rewrite <- sum_0n_scal_l.
apply binary_le_nat_meet.
rewrite meet_sum_powers; auto.
2: intros i Hi; rewrite Hr; apply lt_le_trans with (1 := H3 _ Hi), power_mono_l; lia.
2: { rewrite Hr.
intros i Hi.
generalize (@power_ge_1 p 2); intro.
unfold lt.
replace (S (power p 2 -1)) with (power p 2); try lia.
apply power_mono_l; lia. }
apply msum_ext; intros i Hi; f_equal.
apply binary_le_nat_meet, power_2_minus_1_gt.
assert (a i < power p 2); try lia.
apply lt_le_trans with (1 := H3 _ Hi), power_mono_l; lia.
Qed.
Fact sum_powers_binary_le_inv n f e m :
(forall i, i < n -> f i < r)
-> (forall i j, i < j < n -> e i < e j)
-> m ≲ sum_powers r n f e
-> { k : nat &
{ g : nat -> nat &
{ h | m = sum_powers r k g (fun i => e (h i))
/\ k <= n
/\ (forall i, i < k -> g i <> 0 /\ g i ≲ f (h i))
/\ (forall i, i < k -> h i < n)
/\ (forall i j, i < j < k -> h i < h j) } } }.
Proof.
intros H1 H2 H3.
generalize (sinc_injective _ H2); intros H0.
simpl in H3; rewrite sum_powers_ortho in H3; auto.
apply binary_le_joins_inv in H3.
destruct H3 as (k & g & h & H4 & H10 & H5 & H6 & H7).
generalize (sinc_injective _ H7); intros H8.
assert (forall i, { a | i < k -> g i = a * power (e (h i)) r /\ a <> 0 /\ a ≲ f (h i) }) as H.
{ intros i.
destruct (le_lt_dec k i) as [ H | H ].
* exists 0; intros; lia.
* destruct (H5 _ H) as (G1 & G2).
rewrite Hr, <- power_mult in G2.
apply binary_le_mult_power2_inv in G2; auto.
destruct G2 as (a & G2 & G3 & G4).
rewrite power_mult, <- Hr in G2.
exists a; auto. }
set (g' := fun i => proj1_sig (H i)).
assert (Hg' : forall i, i < k -> g i = g' i * power (e (h i)) r /\ g' i <> 0 /\ g' i ≲ f (h i)).
{ intro i; apply (proj2_sig (H i)). }
generalize g' Hg'; clear H g' Hg'; intros g' Hg'.
exists k, g', h; split; [ | split; [ | split ] ]; auto.
- rewrite sum_powers_ortho, H4.
* apply msum_ext. intros; apply Hg'; auto.
* intros i Hi; apply le_lt_trans with (f (h i)).
+ apply binary_le_le, Hg'; auto.
+ apply H1, H6; auto.
* intros ? ? ? ? E; apply H0 in E; auto.
- intros; apply Hg'; auto.
Qed.
Fact binary_le_sum_powers_inv n f e m :
(forall i, i < n -> f i < r)
-> (forall i j, i < j < n -> e i < e j)
-> m ≲ sum_powers r n f e
-> { g | m = sum_powers r n g e /\ forall i, i < n -> g i ≲ f i }.
Proof.
intros H1 H2 H3.
generalize (sinc_injective _ H2); intros H0.
simpl in H3; rewrite sum_powers_ortho in H3; auto.
apply binary_le_joins_inv' in H3.
destruct H3 as (g & H3 & H4).
assert (forall i, i < n -> { h | g i = h * power (e i) r /\ h ≲ f i }) as h_full.
{ intros i Hi; apply binary_le_power_inv; auto. }
set (h := fun i => match le_lt_dec n i with left _ => 0 | right H => proj1_sig (h_full _ H) end).
assert (Hh : forall i, i < n -> g i = h i * power (e i) r /\ h i ≲ f i).
{ intros i Hi; unfold h; destruct (le_lt_dec n i) as [ | H' ]; try lia.
apply (proj2_sig (h_full _ H')). }
generalize h Hh; clear h_full h Hh; intros h Hh.
exists h; split; auto.
+ rewrite H3.
rewrite sum_powers_ortho; auto.
* apply msum_ext; intros; apply Hh; auto.
* intros i Hi; apply le_lt_trans with (2 := H1 _ Hi), binary_le_le, Hh; auto.
+ intros; apply Hh; auto.
Qed.
Fact sum_power_binary_lt_inv p n f e m :
0 < p <= q
-> (forall i j, i < j < n -> f i < f j)
-> (forall i j, i < j < n -> e i < e j)
-> m ≲ (power p 2-1) * ∑ n (fun i => power (f i) r)
-> exists a, m = ∑ n (fun i => a i * power (f i) r)
/\ forall i, i < n -> a i < power p 2.
Proof.
intros H1 H2 H3 H4.
rewrite <- sum_0n_scal_l in H4.
apply binary_le_sum_powers_inv in H4; auto.
+ destruct H4 as (a & H5 & H6).
exists a; split; auto.
intros i Hi; apply power_2_minus_1_gt; auto.
+ intros i Hi.
apply lt_le_trans with (power p 2).
- generalize (@power_ge_1 p 2); intros; lia.
- rewrite Hr; apply power_mono_l; lia.
Qed.
End nat_meet_digits.
(* End lb_nat. *)