(* 
  Autor(s):
    Andrej Dudenhefner (1) 
  Affiliation(s):
    (1) Saarland University, Saarbrücken, Germany
*)


(* 
  Reduction(s): 
    Halting Problem of One-Counter Machines (CM1_HALT) to 
    Uniform Boundedness of Deterministic, Length-preserving Stack Machines
*)


Require Import Relation_Operators Lia PeanoNat List.
Import ListNotations.

Require Undecidability.CounterMachines.CM1.
Module CM := CM1.
Require Undecidability.CounterMachines.Util.CM1_facts.
Module CM_facts := CM1_facts.

Require Undecidability.StackMachines.Reductions.CM1_HALT_to_SMNdl_UB.SMX.

Require Import Undecidability.StackMachines.SMN.

From Undecidability.StackMachines.Util Require Import Facts Nat_facts List_facts Enumerable.
Require Import Undecidability.StackMachines.Reductions.CM1_HALT_to_SMNdl_UB.CM1_to_SMX.

Require Import ssreflect ssrbool ssrfun.

Set Default Proof Using "Type".
Set Default Goal Selector "!".

Module Argument.

Local Instance Prefix_Enumerable : Enumerable Prefix.
Proof.
  apply: (enumarableI
    (fun x => if x is Try then 0 else if x is Yes then 1 else 2)
    (fun x => if x is 0 then Try else if x is 1 then Yes else No)).
  by case.
Qed.

Local Instance BasicState_Enumerable : Enumerable BasicState.
Proof.
  apply: (enumarableI
    (fun x =>
      match x with
      | is_bounded b => (0, to_nat b) | index p n => (1, to_nat (p, n)) | increase p n => (2, to_nat (p, n))
      end)
    (fun x =>
      match x with
      | (0, n) => is_bounded (of_nat n) | (1, n) => let '(p, n) := of_nat n in index p n
      | (2, n) => let '(p, n) := of_nat n in increase p n | _ => is_bounded false
      end)).
  case; move=> *; by rewrite ?enumP.
Qed.

Local Instance State_Enumerable : Enumerable State.
Proof.
  apply: (enumarableI
    (fun x =>
      match x with
      | basic_state X => (0, to_nat X) | goto n X Y => (1, to_nat (n, X, Y))
      end)
    (fun x =>
      match x with
      | (0, n) => basic_state (of_nat n) | (1, n) => let '(n, X, Y) := of_nat n in goto n X Y | _ => basic_state (is_bounded false)
      end)).
  case; move=> *; by rewrite ?enumP.
Qed.

Section Reduction.
  Variable MX : SMX.SMX (State := State) (Symbol := Symbol).
  Variable deterministic_MX : SMX.deterministic MX.
  Variable length_preserving_MX : forall s t X s' t' Y b,
    In ((s, t, X), (s', t', Y), b) MX -> length (s ++ t) = length (s' ++ t') /\ 1 <= length (s ++ t).
  Variable flip_consistent_MX : forall s1 t1 X c b1 s2 t2 c2 b2,
    In ((s1, t1, X), c, b1) MX -> In ((s2, t2, X), c2, b2) MX -> b1 = b2.

  Local Definition SMX_Instruction := SMX.Instruction (State := State) (Symbol := Symbol).

  Definition encode_Symbol (a: Symbol) : bool := if a is zero then false else true.

  Definition decode_Symbol (a: bool) : Symbol := if a is false then zero else one.

  Definition encode_Stack (s: list Symbol) : list bool := map encode_Symbol s.

  Definition decode_Stack (s: list bool) : list Symbol := map decode_Symbol s.

  Lemma encode_decode_Stack {s: list bool} : encode_Stack (decode_Stack s) = s.
  Proof. rewrite /encode_Stack /decode_Stack map_map. elim: s; [done | by case=> l /= ->]. Qed.

  Lemma decode_encode_Stack {s: list Symbol} : decode_Stack (encode_Stack s) = s.
  Proof. rewrite /encode_Stack /decode_Stack map_map. elim: s; [done | by case=> l /= ->]. Qed.

  Lemma encode_Stack_inj {s t: list Symbol} : encode_Stack s = encode_Stack t -> s = t.
  Proof. move /(f_equal decode_Stack). by rewrite ?decode_encode_Stack. Qed.

  Lemma encode_Stack_app {v w} : encode_Stack (v ++ w) = encode_Stack v ++ encode_Stack w.
  Proof. by rewrite /encode_Stack map_app. Qed.

  (* state (x, true) represents that the next instruction has to be performed mirrored *)
  Definition encode_Instruction : SMX_Instruction -> list Instruction :=
    fun '((r, s, x), (r', s', y), b) => if b is true then
      [
        ((encode_Stack r, encode_Stack s, to_nat (x, false)), (encode_Stack r', encode_Stack s', to_nat (y, true)));
        ((encode_Stack s, encode_Stack r, to_nat (x, true)), (encode_Stack s', encode_Stack r', to_nat (y, false)))
      ] else
      [
        ((encode_Stack r, encode_Stack s, to_nat (x, false)), (encode_Stack r', encode_Stack s', to_nat (y, false)));
        ((encode_Stack s, encode_Stack r, to_nat (x, true)), (encode_Stack s', encode_Stack r', to_nat (y, true)))
      ].

  (* encoding of MX *)
  Definition MN: SMN := flat_map encode_Instruction MX.

  Theorem length_preserving_MN : length_preserving MN.
  Proof using length_preserving_MX.
    move=> s t X s' t' Y. rewrite /MN in_flat_map /encode_Instruction.
    move=> [[[[[? ?] ?] [[? ?] ?]] b]] [/length_preserving_MX [H1 H2]].
    case: b; (case; last (case; last done)).
    all: move=> [] *; subst; move: H1 H2; rewrite /encode_Stack ?app_length ?map_length; by lia.
  Qed.

  Lemma simulation_step_false {l r x l' r' y} :
    SMX.step MX (l, r, x) (l', r', y) ->
    step MN (encode_Stack l, encode_Stack r, to_nat (x, false)) (encode_Stack l', encode_Stack r', to_nat (y, false)) \/
    step MN (encode_Stack l, encode_Stack r, to_nat (x, false)) (encode_Stack r', encode_Stack l', to_nat (y, true)).
  Proof.
    move Hc: (l, r, x) => c. move Hd: (l', r', y) => d Hcd. case: Hcd Hc Hd.
    move=> v w r1 s1 r2 s2 x' y' [|] HMX [] ? ? ? [] ? ? ?; subst.
    - right. rewrite ?encode_Stack_app. apply: transition.
      rewrite in_flat_map. eexists. constructor; first by eassumption.
      by left.
    - left. rewrite ?encode_Stack_app. apply: transition.
      rewrite in_flat_map. eexists. constructor; first by eassumption.
      by left.
  Qed.

  Lemma simulation_step_true {l r x l' r' y} :
    SMX.step MX (l, r, x) (l', r', y) ->
    step MN (encode_Stack r, encode_Stack l, to_nat (x, true)) (encode_Stack r', encode_Stack l', to_nat (y, true)) \/
    step MN (encode_Stack r, encode_Stack l, to_nat (x, true)) (encode_Stack l', encode_Stack r', to_nat (y, false)).
  Proof.
    move Hc: (l, r, x) => c. move Hd: (l', r', y) => d Hcd. case: Hcd Hc Hd.
    move=> v w r1 s1 r2 s2 x' y' [|] HMX [] ? ? ? [] ? ? ?; subst.
    - right. rewrite ?encode_Stack_app. apply: transition.
      rewrite in_flat_map. eexists. constructor; first by eassumption.
      right. by left.
    - left. rewrite ?encode_Stack_app. apply: transition.
      rewrite in_flat_map. eexists. constructor; first by eassumption.
      right. by left.
  Qed.

  Lemma simulation {c d} :
    SMX.reachable MX c d ->
    let '(l, r, x) := c in let '(l', r', y) := d in
    (reachable MN (encode_Stack r, encode_Stack l, to_nat (x, true)) (encode_Stack r', encode_Stack l', to_nat (y, true)) \/
    reachable MN (encode_Stack r, encode_Stack l, to_nat (x, true)) (encode_Stack l', encode_Stack r', to_nat (y, false))) /\
    (reachable MN (encode_Stack l, encode_Stack r, to_nat (x, false)) (encode_Stack l', encode_Stack r', to_nat (y, false)) \/
    reachable MN (encode_Stack l, encode_Stack r, to_nat (x, false)) (encode_Stack r', encode_Stack l', to_nat (y, true))).
  Proof.
    elim.
    - move=> [[l r] x] [[l' r'] y] Hxy. constructor.
      + have [? | ?] := simulation_step_true Hxy; [left | right]; by apply: rt_step.
      + have [? | ?] := simulation_step_false Hxy; [left | right]; by apply: rt_step.
    - move=> [[l r] x]. constructor; left; by apply rt_refl.
    - move=> [[lx rx] x] [[ly ry] y] [[lz rz] z] _ Hxy _ Hyz. constructor.
      + move: Hxy Hyz => [[Hxy|Hxy] _].
        * move=> [[Hyz|Hyz] _]; [left | right]; apply: rt_trans; by eassumption.
        * move=> [_ [Hyz|Hyz]]; [right | left]; apply: rt_trans; by eassumption.
      + move: Hxy Hyz => [_ [Hxy|Hxy]].
        * move=> [_ [Hyz|Hyz]]; [left | right]; apply: rt_trans; by eassumption.
        * move=> [[Hyz|Hyz] _]; [right | left] ; apply: rt_trans; by eassumption.
  Qed.

  Lemma inverse_simulation_step L R X : exists (x: State) (b_x: bool) (l r: list Symbol) (b_y: bool),
    forall L' R' Y, step MN (L, R, X) (L', R', Y) ->
      exists (y: State) (l' r': list Symbol),
      (L, R, X) = (encode_Stack l, encode_Stack r, to_nat (x, b_x)) /\
      (L', R', Y) = (encode_Stack l', encode_Stack r', to_nat (y, b_y)) /\
        match b_x, b_y with
        | false, false => SMX.step MX (l, r, x) (l', r', y)
        | false, true => SMX.step MX (l, r, x) (r', l', y)
        | true, false => SMX.step MX (r, l, x) (l', r', y)
        | true, true => SMX.step MX (r, l, x) (r', l', y)
        end.
  Proof using flip_consistent_MX.
    set x_b_x : State * bool := of_nat X.
    move Hx_b_x: x_b_x => [x b_x]. subst x_b_x. exists x, b_x, (decode_Stack L), (decode_Stack R).
    have := Exists_dec (fun '((_, X), _, b) => X = x) MX.
    move=> /(_ ltac:(move=> [[[? ?] ?] ?]; do 3 (decide equality))). case; first last.
    { move Hx': (L, R, X) => x' HMX. exists false. move=> L' R' Y HXY. exfalso. apply: HMX.
      apply /Exists_exists. case: HXY Hx'. move=> >.
      rewrite /MN in_flat_map. move=> [[[[[? ?] ?] [[? ?] ?]] b]] + [] *. subst.
      move=> [H2MX HX]. eexists. constructor; first by eassumption. move=> /=.
      move: b HX {H2MX} => /= [|].
      { case.
        - move=> [] *. subst. move: Hx_b_x. by rewrite enumP => [[]].
        - case; last done. move=> [] *. subst. move: Hx_b_x. by rewrite enumP => [[]]. }
      case.
        - move=> [] *. subst. move: Hx_b_x. by rewrite enumP => [[]].
        - case; last done. move=> [] *. subst. move: Hx_b_x. by rewrite enumP => [[]]. }
    rewrite Exists_exists. move=> [[[[[? ?] x'] [[? ?] ?]] b'] [H2MX ?]]. subst x'.
    exists (if b' then negb b_x else b_x).
    move=> L' R' Y.
    move Hc: (L, R, X) => c. move Hd: (L', R', Y) => d Hcd. case: Hcd Hc Hd Hx_b_x.
    move=> v w r1 s1 r2 s2 x' y + [] ? ? ? [] ? ? ?; subst.
    rewrite /MN in_flat_map. move=> [[[[[? ?] ?] [[? ?] ?]] b]].
    move=> + Hx_b_x. rewrite ?encode_decode_Stack -Hx_b_x.
    case: b.
    { move=> [HMX] /=. case.
      - move=> [] *. subst. move: Hx_b_x. rewrite ?enumP. move=> [? ?]. subst.
        have ? := flip_consistent_MX _ _ _ _ _ _ _ _ _ HMX H2MX. subst b'.
        rewrite -(@encode_decode_Stack v) -(@encode_decode_Stack w) -?encode_Stack_app. do 3 eexists.
        constructor; first by reflexivity. constructor; first by reflexivity.
        move: HMX => /(SMX.transition MX). rewrite ?decode_encode_Stack. by apply.
      - case; last done.
        move=> [] *. subst. move: Hx_b_x. rewrite ?enumP. move=> [? ?]. subst.
        have ? := flip_consistent_MX _ _ _ _ _ _ _ _ _ HMX H2MX. subst b'.
        rewrite -(@encode_decode_Stack v) -(@encode_decode_Stack w) -?encode_Stack_app. do 3 eexists.
        constructor; first by reflexivity. constructor; first by reflexivity.
        move: HMX => /(SMX.transition MX). rewrite ?decode_encode_Stack. by apply. }
    move=> [HMX] /=. case.
    - move=> [] *. subst. move: Hx_b_x. rewrite ?enumP. move=> [? ?]. subst.
      have ? := flip_consistent_MX _ _ _ _ _ _ _ _ _ HMX H2MX. subst b'.
      rewrite -(@encode_decode_Stack v) -(@encode_decode_Stack w) -?encode_Stack_app. do 3 eexists.
      constructor; first by reflexivity. constructor; first by reflexivity.
      move: HMX => /(SMX.transition MX). rewrite ?decode_encode_Stack. by apply.
    - case; last done.
      move=> [] *. subst. move: Hx_b_x. rewrite ?enumP. move=> [? ?]. subst.
      have ? := flip_consistent_MX _ _ _ _ _ _ _ _ _ HMX H2MX. subst b'.
      rewrite -(@encode_decode_Stack v) -(@encode_decode_Stack w) -?encode_Stack_app. do 3 eexists.
      constructor; first by reflexivity. constructor; first by reflexivity.
      move: HMX => /(SMX.transition MX). rewrite ?decode_encode_Stack. apply.
  Qed.

  Lemma deterministic_MN : deterministic MN.
  Proof using flip_consistent_MX deterministic_MX.
    move=> [[L R] X]. have [x [b_x [l [r [b_y Hx]]]]]:= inverse_simulation_step L R X.
    move=> [[? ?] ?] [[? ?] ?] /Hx + /Hx.
    move=> [y [ly [ry [{}Hx [-> Hy]]]]] [z [lz [rz [_ [-> Hz]]]]].
    move: b_x b_y Hx Hy Hz.
    move=> [|] [|] ?; move /deterministic_MX => H /H; by congruence.
  Qed.

  Lemma inverse_simulation {x y} :
  reachable MN x y -> x = y \/
  let '(L, R, X) := x in let '(L', R', Y) := y in
  exists (x y: State) (b_x b_y: bool) (l r l' r': list Symbol),
    (L, R, X) = (encode_Stack l, encode_Stack r, to_nat (x, b_x)) /\
    (L', R', Y) = (encode_Stack l', encode_Stack r', to_nat (y, b_y)) /\
    match b_x, b_y with
    | false, false => SMX.reachable MX (l, r, x) (l', r', y)
    | false, true => SMX.reachable MX (l, r, x) (r', l', y)
    | true, false => SMX.reachable MX (r, l, x) (l', r', y)
    | true, true => SMX.reachable MX (r, l, x) (r', l', y)
    end.
  Proof using flip_consistent_MX.
    elim.
    - move=> [[L R] X]. have [{}x [b_x [l [r [b_y Hx]]]]] := inverse_simulation_step L R X.
      move=> [[? ?] ?] /Hx{Hx} => [[{}y]] [l'] [r'] [->] [->] Hxy.
      right. do 8 eexists. constructor; first by reflexivity. constructor; first by reflexivity.
      move: b_x b_y Hxy => [|] [|] Hxy; by apply: rt_step.
    - move=> ?. by left.
    - move=> [[L1 R1] X1] [[L2 R2] X2] [[L3 R3] X3].
      move=> _ [[] ? ? ?|IH1]; first by subst.
      move=> _ [[] ? ? ?|IH2]; first by (subst; right).
      move: IH1 => [x1] [y1] [b_x1] [b_y1] [l1] [r1] [l'1] [r'1] [[]] ? ? ? [[]] ? ? ? Hx1y1.
      move: IH2 => [x2] [y2] [b_x2] [b_y2] [l2] [r2] [l'2] [r'2] [[]] ? ? ? [[]] ? ? ? Hx2y2.
      subst. right. exists x1, y2, b_x1, b_y2, l1, r1, l'2, r'2.
      constructor; first done. constructor; first done.
      have [? ?]: (y1, b_y1) = (x2, b_x2) by apply /to_nat_inj.
      have ?: l'1 = l2 by (apply: encode_Stack_inj; congruence).
      have ?: r'1 = r2 by (apply: encode_Stack_inj; congruence).
      subst.
      move: Hx1y1 Hx2y2. clear. move: b_x1 b_x2 b_y2 => [|] [|] [|]; by apply: rt_trans.
  Qed.

  Section Transport.
    Variable NMX : nat.
    Variable bounded_MX : SMX.bounded MX NMX.

    Lemma bounded_MN : bounded MN (1 + 4*NMX).
    Proof using flip_consistent_MX bounded_MX.
      rewrite /bounded. move=> [[L R] X].
      set x_b_x : State * bool := of_nat X.
      move Hx: x_b_x => [x b_x].
      have [T1 [H1T1 H2T1]] := bounded_MX (decode_Stack L, decode_Stack R, x).
      have [T2 [H1T2 H2T2]] := bounded_MX (decode_Stack R, decode_Stack L, x).
      exists ([(L, R, X)] ++
        flat_map (fun '(l, r, x) =>
          [(encode_Stack l, encode_Stack r, to_nat (x, b_x));
          (encode_Stack r, encode_Stack l, to_nat (x, negb b_x))]) T1 ++
        flat_map (fun '(l, r, x) =>
          [(encode_Stack l, encode_Stack r, to_nat (x, negb b_x));
          (encode_Stack r, encode_Stack l, to_nat (x, b_x))]) T2).
      constructor.
      { move=> [[L' R'] Y] /inverse_simulation. case.
        { move=> <-. by left. }
        move=> [x'] [y'] [b_x'] [b_y'] [l] [r] [l'] [r'].
        move=> [[]] ? ? ? [[]] ? ? ?. subst.
        have [? ?] : (x, b_x) = (x', b_x') by rewrite -Hx /x_b_x enumP. subst.
        move Hb_x: (b_x') => b_x. move Hb_y: (b_y') => b_y.
        rewrite ?decode_encode_Stack in H1T1.
        rewrite ?decode_encode_Stack in H1T2.

        move: b_x b_y Hb_x Hb_y => [|] [|] ? ?; subst; rewrite ?in_app_iff ?in_flat_map.
        - move /H1T2 => ?. right. right. eexists.
          constructor; first by eassumption.
          move=> /=. by firstorder done.
        - move /H1T2 => ?. right. right. eexists.
          constructor; first by eassumption.
          move=> /=. by firstorder done.
        - move /H1T1 => ?. right. left. eexists.
          constructor; first by eassumption.
          move=> /=. by firstorder done.
        - move /H1T1 => ?. right. left. eexists.
          constructor; first by eassumption.
          move=> /=. by firstorder done.
      }
      rewrite ?app_length.
      set f1 := (f in (flat_map f T1)). set f2 := (f in (flat_map f T2)).
      have := legnth_flat_map (f := f1) (l := T1) (n := 2).
      apply: unnest.
      { move=> [[? ?] ?]. rewrite /f1 /length. by lia. }
      have := legnth_flat_map (f := f2) (l := T2) (n := 2).
      apply: unnest.
      { move=> [[? ?] ?]. rewrite /f2 /length. by lia. }
      rewrite /length -?/(length _).
      move: H2T1 H2T2. move: (length _) (length _). by lia.
    Qed.

  End Transport.

  Section Reflection.
    Variable NMN : nat.
    Variable bounded_MN : bounded MN NMN.

    Definition encode_State : State * bool -> nat := to_nat.

    Definition decode_State : nat -> State * bool := of_nat.

    Lemma bounded_MX : SMX.bounded MX (2*NMN).
    Proof using bounded_MN.
      rewrite /SMX.bounded. move=> [[l r] x].
      have [T [H1T H2T]]:= bounded_MN (encode_Stack l, encode_Stack r, encode_State (x, false)).
      exists
        ((map (fun '(L, R, X) => (decode_Stack L, decode_Stack R, fst (decode_State X))) T)
        ++ (map (fun '(L, R, X) => (decode_Stack R, decode_Stack L, fst (decode_State X))) T)).
      constructor; first last.
      { rewrite ?app_length ?map_length. move: (length T) H2T. by lia. }
      move=> [[l' r'] y] /simulation /=. rewrite ?in_app_iff ?in_map_iff.
      move=> [] _ [Hxy|Hxy].
      - left. exists (encode_Stack l', encode_Stack r', to_nat (y, false)).
        rewrite ?decode_encode_Stack /decode_State ?enumP /=.
        constructor; first done.
        by apply: H1T.
      - right. exists (encode_Stack r', encode_Stack l', to_nat (y, true)).
        rewrite ?decode_encode_Stack /decode_State ?enumP /=.
        constructor; first done.
        by apply: H1T.
    Qed.

  End Reflection.

End Reduction.
End Argument.

Require Import Undecidability.Synthetic.Definitions.
Require Import Undecidability.CounterMachines.CM1.

(* many-one reduction from counter machine halting to uniform boundedness of stack machines *)
Theorem reduction : CM1_HALT SMNdl_UB.
Proof.
  unshelve eexists (fun '(exist _ P HP) => exist _ (Argument.MN (M P)) _).
  (* establish domain properties *)
  - constructor; [apply: Argument.deterministic_MN | apply: Argument.length_preserving_MN].
    + by apply: deterministic_M.
    + by apply: flip_consistent_M.
    + by apply: length_preserving_M.
  - move=> [P HP]. constructor.
    + move=> [nP] /(terminating_P_to_bounded_M P HP).
      move /Argument.bounded_MN => bounded_MN. eexists.
      apply: bounded_MN. by apply: flip_consistent_M.
    + move=> [nMN] /= /Argument.bounded_MX /(bounded_M_to_terminating_P P HP) H'P.
      eexists. by eassumption.
Qed.