(* 
  Autor(s):
    Andrej Dudenhefner (1)
    Yannick Forster (1)
  Affiliation(s):
    (1) Saarland University, Saarbrücken, Germany
*)


Require Import List Lia.
Import ListNotations.
Require Import Undecidability.SystemF.SysF Undecidability.SystemF.Autosubst.syntax Undecidability.SystemF.Autosubst.unscoped.
Import UnscopedNotations.
Require Import Undecidability.SystemF.Util.Facts.

Require Import ssreflect ssrbool ssrfun.

Set Default Goal Selector "!".

(* evaluates propositional predicate P on all free variables *)
Fixpoint allfv_poly_type (p: nat -> Prop) (t: poly_type) :=
  match t with
  | poly_var x => p x
  | poly_arr s t => allfv_poly_type p s /\ allfv_poly_type p t
  | poly_abs t => allfv_poly_type (scons True p) t
  end.

(* is_simple t holds iff t does not contain quantifications *)
Fixpoint is_simple (t: poly_type) :=
  match t with
  | poly_var _ => True
  | poly_arr s t => is_simple s /\ is_simple t
  | poly_abs _ => False
  end.

(* COMPOUND poly_type CONSTRUCTION *)
(* many_poly_arr s1 .. sn t = s1 -> .. sn -> t *)
Definition many_poly_arr (arguments: list poly_type) (target: poly_type) :=
  fold_right poly_arr target arguments.

(* many_poly_abs n t = ∀ .. ∀ t *)
Definition many_poly_abs (n: nat) (t: poly_type) :=
  Nat.iter n poly_abs t.

Fact subst_poly_type_many_poly_abs {σ n target} :
  subst_poly_type σ (many_poly_abs n target) =
  many_poly_abs n (subst_poly_type (Nat.iter n up_poly_type_poly_type σ) target).
Proof.
  elim: n σ; first done.
  move=> n IH σ /=. congr poly_abs. by rewrite IH iter_last.
Qed.

Fact ren_poly_type_many_poly_abs {ξ n target} :
  ren_poly_type ξ (many_poly_abs n target) =
  many_poly_abs n (ren_poly_type (Nat.iter n up_ren ξ) target).
Proof.
  elim: n ξ; first done.
  move=> n IH ξ /=. congr poly_abs. by rewrite IH iter_last.
Qed.

Fact subst_poly_type_many_poly_arr {σ args target} :
  subst_poly_type σ (many_poly_arr args target) =
  many_poly_arr (map (subst_poly_type σ) args) (subst_poly_type σ target).
Proof.
  elim: args; first done.
  move=> s args IH /=. congr poly_arr. by apply: IH.
Qed.

(* last_poly_var (∀..∀ s1 -> .. sn -> x) = Some x if x is free *)
Fixpoint last_poly_var (t: poly_type) : option nat :=
  match t with
  | poly_var x => Some x
  | poly_arr _ t => last_poly_var t
  | poly_abs t => if last_poly_var t is Some (S x) then Some x else None
  end.

(* parameters s1 -> .. -> sn -> x = s1; ..; sn *)
Fixpoint parameters_poly_arr (t: poly_type) : list poly_type :=
  match t with
  | poly_var x => []
  | poly_arr s t => s :: parameters_poly_arr t
  | poly_abs t => []
  end.

Lemma parameters_many_poly_arr {ss x} : parameters_poly_arr (many_poly_arr ss (poly_var x)) = ss.
Proof. elim: ss; first done. move=> /=. by congruence. Qed.

Lemma fold_right_length_ts {σ: nat -> poly_type} {ts x} :
  fold_right scons σ ts (length ts + x) = σ x.
Proof. elim: ts σ; [done | by move=> t ts + σ; apply]. Qed.

Lemma fold_right_length_ts_lt {σ: nat -> poly_type} {ts x} :
  x < length ts -> fold_right scons σ ts x = nth x ts (poly_var 0).
Proof. elim: ts x σ; [ by move=> /=; lia |].
  move=> t ts IH [|x] σ /= ?; [done | by apply: IH; lia].
Qed.

Lemma fold_right_length_ts_ge {σ : nat -> poly_type} {ts x} :
  length ts <= x -> fold_right scons σ ts x = σ (x - length ts).
Proof.
  move=> ?. have {1}->: x = length ts + (x - length ts) by lia. by rewrite fold_right_length_ts.
Qed.

Lemma fold_right_map_seq {f: nat -> poly_type} {x n} : x < n ->
  fold_right scons poly_var (map f (seq 0 n)) x = f x.
Proof.
  move=> ?. rewrite fold_right_length_ts_lt; first by rewrite map_length seq_length; lia.
  rewrite (nth_indep _ _ (f 0)); first by rewrite map_length seq_length; lia.
  rewrite map_nth seq_nth; by [|lia].
Qed.

Fact up_ren_id {x} : up_ren id x = x.
Proof. by case x. Qed.

Fact upRen_poly_type_poly_type_id {t}: upRen_poly_type_poly_type id t = t.
Proof. by case: t. Qed.

Lemma up_poly_type_poly_type_poly_var {x} : up_poly_type_poly_type poly_var x = poly_var x.
Proof. by case: x. Qed.

(* axiom-free conposition of substitutions/renamings; use: rewrite ?poly_type_norm *)
Definition poly_type_norm := (renComp_poly_type, compComp_poly_type, renRen_poly_type, compRen_poly_type).

Fact subst_poly_type_poly_var {t} : subst_poly_type poly_var t = t.
Proof. by rewrite idSubst_poly_type. Qed.

Fact subst_poly_type_poly_var' {σ t} : (forall x, σ x = poly_var x) -> subst_poly_type σ t = t.
Proof. move=> ?. by apply: idSubst_poly_type. Qed.

Fact map_subst_poly_type_poly_var {Gamma} : map (subst_poly_type poly_var) Gamma = Gamma.
Proof. apply: map_id' => ?. by rewrite subst_poly_type_poly_var. Qed.

Fact ren_poly_type_id {t}: ren_poly_type id t = t.
Proof. rewrite -[RHS]subst_poly_type_poly_var. by apply: rinst_inst_poly_type. Qed.

Lemma ren_poly_type_id' {ξ t} : (forall x, ξ x = x) -> ren_poly_type ξ t = t.
Proof. rewrite -[RHS]ren_poly_type_id => ?. by apply: extRen_poly_type. Qed.

Fact ren_as_subst_poly_type {ξ t} : ren_poly_type ξ t = subst_poly_type (ξ >> poly_var) t.
Proof. by apply: rinst_inst_poly_type. Qed.

Lemma iter_scons {X: Type} {x: X} {f: nat -> X} {n m: nat} :
  Nat.iter n (scons x) f (n + m) = f m.
Proof.
  elim: n m f; first done.
  move=> n IH m f /=. by apply: IH.
Qed.

Lemma iter_scons_ge {X: Type} {f: nat -> X} {n x m} :
  n <= m -> Nat.iter n (scons x) f m = f (m - n).
Proof.
  move=> ?. have {1}->: m = n + (m - n) by lia. by rewrite iter_scons.
Qed.

Lemma iter_scons_lt {X: Type} {x: X} {f: nat -> X} {n m: nat} :
  m < n -> Nat.iter n (scons x) f m = x.
Proof.
  elim: n m f; first by lia.
  move=> n IH [|m] f /= ?; first done.
  by rewrite /funcomp IH; first by lia.
Qed.

Lemma iter_up_poly_type_poly_type {n σ x} :
  Nat.iter n up_poly_type_poly_type σ (n + x) = ren_poly_type (Nat.add n) (σ x).
Proof.
  elim: n x σ; first by move=> ? ?; rewrite ren_poly_type_id.
  move=> n IH x σ /=. by rewrite /funcomp IH poly_type_norm.
Qed.

Lemma iter_up_poly_type_poly_type_lt {n σ x} :
  x < n -> Nat.iter n up_poly_type_poly_type σ x = poly_var x.
Proof.
  elim: n x σ; first by lia.
  move=> n IH [|x] σ /= ?; first done.
  by rewrite /funcomp IH; first by lia.
Qed.

Lemma iter_up_poly_type_poly_type_ge {n σ x} : x >= n ->
  Nat.iter n up_poly_type_poly_type σ x = ren_poly_type (Nat.add n) (σ (x - n)).
Proof. move=> ?. have {1}->: x = n + (x - n) by lia. by rewrite iter_up_poly_type_poly_type. Qed.

Lemma allfv_poly_type_impl {P1 P2: nat -> Prop} {t}:
  (forall x, P1 x -> P2 x) -> allfv_poly_type P1 t -> allfv_poly_type P2 t.
Proof.
  elim: t P1 P2.
  - move=> >. by apply.
  - by move=> ? IH1 ? IH2 > /= /copy [/IH1 {}IH1 /IH2 {}IH2] [/IH1 ? /IH2 ?].
  - move=> ? IH > H /=. apply: IH. by case.
Qed.

Lemma allfv_poly_type_allfv_poly_type_impl {P1 P2: nat -> Prop} {t}:
  allfv_poly_type (fun x => P1 x -> P2 x) t -> allfv_poly_type P1 t -> allfv_poly_type P2 t.
Proof.
  elim: t P1 P2.
  - done.
  - move=> ? IH1 ? IH2 > /= [/IH1 {}IH1 /IH2 {}IH2] [/IH1 ? /IH2 ?]. by constructor.
  - move=> ? IH > /= H. apply: IH. apply: allfv_poly_type_impl H. by case.
Qed.

(* extensionality principle on allfv_poly_type *)
Lemma ext_allfv_poly_type {P1 P2 t}: (forall x, P1 x <-> P2 x) -> allfv_poly_type P1 t <-> allfv_poly_type P2 t.
Proof. move=> H. by constructor; apply: allfv_poly_type_impl; move=> ? /H. Qed.

(* extensionality principle on allfv_poly_type narrowed to free variables*)
Lemma ext_allfv_poly_type_allfv_poly_type {P1 P2 t}:
  allfv_poly_type (fun x => P1 x <-> P2 x) t -> allfv_poly_type P1 t <-> allfv_poly_type P2 t.
Proof. move=> H. by constructor; apply: allfv_poly_type_allfv_poly_type_impl; apply: allfv_poly_type_impl H => ? H /H. Qed.

Lemma allfv_poly_type_many_poly_absI {P n t} :
  allfv_poly_type (Nat.iter n (scons True) P) t -> allfv_poly_type P (many_poly_abs n t).
Proof.
  elim: n P; first done.
  move=> n IH P. by rewrite -iter_last => /IH.
Qed.

Lemma allfv_poly_type_many_poly_arrI {P ss x} : Forall (allfv_poly_type P) ss -> P x ->
  allfv_poly_type P (many_poly_arr ss (poly_var x)).
Proof.
  elim: ss; first done.
  move=> > IH /Forall_consP [? /IH {}IH] /IH ?. by constructor.
Qed.

Lemma ext_subst_poly_type_allfv_poly_type {t σ σ'} : allfv_poly_type (fun x => σ x = σ' x) t ->
  subst_poly_type σ t = subst_poly_type σ' t.
Proof.
  elim: t σ σ'.
  - by move=> > /= ->.
  - by move=> ? IH1 ? IH2 > /= [/IH1 -> /IH2 ->].
  - move=> ? IH > /= H. congr poly_abs. apply: IH.
    apply: iffLR H. apply: ext_allfv_poly_type. case; first done.
    move=> x /=. rewrite /funcomp. constructor; first by move=> ->.
    move=> /(congr1 (ren_poly_type Nat.pred)).
    by rewrite ?poly_type_norm ?ren_poly_type_id.
Qed.

Lemma ext_ren_poly_type_allfv_poly_type {t ξ ξ'} : allfv_poly_type (fun x => ξ x = ξ' x) t ->
  ren_poly_type ξ t = ren_poly_type ξ' t.
Proof.
  move=> H. rewrite ?ren_as_subst_poly_type. apply: ext_subst_poly_type_allfv_poly_type.
  apply: allfv_poly_type_impl H => ?. by rewrite /funcomp => ->.
Qed.

(* reexport substitution extensionality lemma from syntax *)
Definition ext_poly_type := ext_poly_type.

Lemma allfv_poly_type_ren_poly_type {P ξ t} : allfv_poly_type P (ren_poly_type ξ t) <-> (allfv_poly_type (ξ >> P) t).
Proof.
  elim: t ξ P.
  - done.
  - by move=> /= ? + ? + ? ? => -> ->.
  - move=> ? /= IH ? ?. rewrite IH. apply: ext_allfv_poly_type.
    rewrite /scons /funcomp. by case.
Qed.

Lemma allfv_poly_type_subst_poly_type {P σ t} : allfv_poly_type P (subst_poly_type σ t) <-> (allfv_poly_type (σ >> allfv_poly_type P) t).
Proof.
  elim: t σ P.
  - done.
  - by move=> /= ? + ? + ? ? => -> ->.
  - move=> ? /= IH ? ?. rewrite IH. apply: ext_allfv_poly_type.
    rewrite /scons /funcomp. case; first done.
    move=> x. rewrite allfv_poly_type_ren_poly_type. by apply: ext_allfv_poly_type.
Qed.

Lemma allfv_poly_type_many_poly_abs {P n t} :
  allfv_poly_type P (many_poly_abs n t) = allfv_poly_type (Nat.iter n (scons True) P) t.
Proof. elim: n P; [ done | move=> n IH P; by rewrite -iter_last -IH ]. Qed.

Lemma allfv_poly_type_TrueI {p: nat -> Prop} {t} : (forall x, p x) -> allfv_poly_type p t.
Proof.
  move=> Hp. elim: t; [done | done |].
  move=> /= ?. apply: allfv_poly_type_impl. case; first done.
  move=> *. by apply: Hp.
Qed.

Lemma ren_poly_type_allfv_id {ξ t} : (allfv_poly_type (fun x => ξ x = x) t) ->
  ren_poly_type ξ t = t.
Proof. rewrite -[RHS]ren_poly_type_id => ?. by apply: ext_ren_poly_type_allfv_poly_type. Qed.

Lemma ren_poly_type_closed_id {ξ t} : allfv_poly_type (fun=> False) t -> ren_poly_type ξ t = t.
Proof. move=> H. apply: ren_poly_type_allfv_id. by apply: allfv_poly_type_impl H. Qed.

(* rough upper bound on the values of free variables *)
Fixpoint poly_var_bound (t: poly_type) : nat :=
  match t with
  | poly_var x => 1 + x
  | poly_arr s t => 1 + poly_var_bound s + poly_var_bound t
  | poly_abs p => 1 + poly_var_bound p
  end.

Lemma poly_var_boundP t : allfv_poly_type (gt (poly_var_bound t)) t.
Proof.
  elim: t.
  - move=> /=. by lia.
  - move=> ? IH1 ? IH2 /=. by constructor; [move: IH1 | move: IH2]; apply: allfv_poly_type_impl; lia.
  - move=> ? /=. apply: allfv_poly_type_impl. case; [done | by move=> /=; lia].
Qed.

Lemma iter_up_ren {n ξ x} :
  Nat.iter n up_ren ξ (n + x) = n + ξ x.
Proof.
  elim: n x ξ; first done.
  move=> n IH x ξ /=. rewrite /funcomp IH. by lia.
Qed.

Lemma iter_up_ren_lt {n ξ x} :
  x < n -> Nat.iter n up_ren ξ x = x.
Proof.
  elim: n x ξ; first by lia.
  move=> n IH [|x] ξ /= ?; first done.
  by rewrite /funcomp IH; first by lia.
Qed.

Lemma iter_up_ren_ge {n ξ x} :
  n <= x -> Nat.iter n up_ren ξ x = n + ξ (x-n).
Proof.
  move=> ?. have {1}->: x = n + (x - n) by lia. by rewrite iter_up_ren.
Qed.

Lemma iter_up_ren_ge' {ξ n n' x}:
  x >= n ->
  Nat.iter (n + n') up_ren ξ x = n + Nat.iter n' up_ren ξ (x - n).
Proof.
  move=> ?.
  have [?|?] : x < n + n' \/ n + n' <= x by lia.
  - rewrite ?iter_up_ren_lt; by lia.
  - have ? : ξ (x - (n + n')) = ξ (x - n - n') by congr ξ; lia.
    by rewrite ?iter_up_ren_ge; lia.
Qed.

Lemma iter_up_ren_add {n m x}:
  Nat.iter n up_ren (Nat.add m) x = x + (Nat.iter n (locked up_ren) (Nat.add m) x - x).
Proof.
  rewrite -lock. have [?|->] : x < n \/ x = n + (x - n) by lia.
  - rewrite iter_up_ren_lt; by lia.
  - rewrite iter_up_ren. by lia.
Qed.

Lemma iter_up_ren_iter_up_ren {n ξ1 ξ2 x} :
  Nat.iter n up_ren ξ1 (Nat.iter n up_ren ξ2 x) = Nat.iter n up_ren (ξ2 >> ξ1) x.
Proof.
  have [?|->] : x < n \/ x = n + (x - n) by lia.
  - rewrite [Nat.iter _ _ ξ2 x]iter_up_ren_lt; first done.
    rewrite iter_up_ren_lt; first done. by rewrite iter_up_ren_lt; first done.
  - by rewrite ?iter_up_ren /funcomp.
Qed.

Lemma ren_poly_type_poly_var_bound {ξ n t} : poly_var_bound t <= n ->
  ren_poly_type (Nat.iter n up_ren ξ) t = t.
Proof.
  move=> H. apply: ren_poly_type_allfv_id.
  apply: allfv_poly_type_impl (poly_var_boundP t) => ? ?.
  apply: iter_up_ren_lt. by lia.
Qed.

Lemma subst_poly_type_map_seq {f n t} :
  poly_var_bound t <= n ->
  subst_poly_type (fold_right scons poly_var (map f (seq 0 n))) t = subst_poly_type f t.
Proof.
  move=> H. apply: ext_subst_poly_type_allfv_poly_type.
  apply: allfv_poly_type_impl (poly_var_boundP t) => x ?.
  apply: fold_right_map_seq. by lia.
Qed.

Lemma map_ren_poly_type_id {Gamma} : map (ren_poly_type id) Gamma = Gamma.
Proof. under map_ext => ? do rewrite ren_poly_type_id. by rewrite map_id. Qed.

Lemma many_poly_abs_many_poly_abs {n m t} : many_poly_abs n (many_poly_abs m t) = many_poly_abs (n + m) t.
Proof. by rewrite /many_poly_abs iter_plus. Qed.

Lemma many_poly_abs_eqE {n s t} : many_poly_abs n s = many_poly_abs n t -> s = t.
Proof. elim: n; [done | by move=> ? + []]. Qed.

Lemma many_poly_abs_eqE' {n1 n2 s t} :
  many_poly_abs n1 s = many_poly_abs n2 t ->
  match s, t with
  | poly_abs _, _ | _, poly_abs _ => True
  | _, _ => n1 = n2 /\ s = t
  end.
Proof.
  elim: n1 n2.
  - case.
    + move=> /= ->. by case: t.
    + by move=> ? /= ->.
  - move=> n IH. case.
    + move=> /= <-. clear. by case: s.
    + move=> ? [/IH]. clear.
      case: s; case t; move=> /=; by firstorder lia.
Qed.

Definition is_poly_abs (t: poly_type) := if t is poly_abs _ then True else False.

Lemma many_poly_abs_eqE'' {n1 t1 n2 t2} : many_poly_abs n1 t1 = many_poly_abs n2 t2 ->
  not (is_poly_abs t2) -> exists n3, t1 = many_poly_abs n3 t2 /\ n2 = n1 + n3.
Proof.
  elim: n2 n1.
  - move=> [|?].
    + move=> /= <- _. by exists 0.
    + by move=> /= <- /=.
  - move=> n1 IH [|n2].
    + move=> /= -> _. by exists (1+n1).
    + move=> [/IH H] /H [n3] [-> ->]. by exists n3.
Qed.

Lemma many_poly_absI t : exists n s, t = many_poly_abs n s /\ not (is_poly_abs s).
Proof.
  elim: t.
  - move=> >. exists 0. eexists. by constructor.
  - move=> >. exists 0. eexists. by constructor.
  - move=> t [n] [s] [-> ?]. exists (1+n). by eexists.
Qed.

Lemma many_poly_abs_poly_var_eq_subst_poly_typeE {σ n x t}:
  many_poly_abs n (poly_var (n+x)) = subst_poly_type σ t ->
  exists i m y, n = i + m /\ t = many_poly_abs m (poly_var (m+y)).
Proof.
  have [n' [t' [-> +]]] := many_poly_absI t. case: t'.
  - move=> y _. rewrite subst_poly_type_many_poly_abs /=.
    have [?|->] : y < n' \/ y = n' + (y - n') by lia.
    + rewrite iter_up_poly_type_poly_type_lt; first done.
      move=> <-. by exists 0, n, x.
    + move=> /esym /many_poly_abs_eqE'' /(_ ltac:(done)).
      move=> [n''] [? ->]. exists n'', n', (y - n'). constructor; [by lia | done].
  - move=> ? ? _. rewrite subst_poly_type_many_poly_abs /=.
    by move=> /many_poly_abs_eqE' [].
  - by move=> /=.
Qed.

Lemma many_poly_abs_poly_arr_eq_subst_poly_typeE {σ n x t}:
  many_poly_abs n (poly_arr (poly_var (n+x)) (poly_var (n+x))) = subst_poly_type σ t ->
  (exists m y, t = many_poly_abs m (poly_var (m+y))) \/
  (exists m y1 y2, t = many_poly_abs m (poly_arr (poly_var (m+y1)) (poly_var (m+y2)))).
Proof.
  have [n' [t' [-> +]]] := many_poly_absI t. case: t'.
  - move=> y _. rewrite subst_poly_type_many_poly_abs /=.
    have [?|->] : y < n' \/ y = n' + (y - n') by lia.
    + rewrite iter_up_poly_type_poly_type_lt; first done.
      move=> <-. right. by exists n, x, x.
    + move=> ?. left. by exists n', (y - n').
  - move=> s'' t'' _. rewrite subst_poly_type_many_poly_abs /=.
    move=> /many_poly_abs_eqE' [<-] [].
    case: s''; [ | done | done]. case: t''; [ | done | done].
    move=> y1 y2 /=.
    have [?|->] : y1 < n \/ y1 = n + (y1 - n) by lia.
    + move=> _. rewrite iter_up_poly_type_poly_type_lt; first done.
      move=> []. by lia.
    + have [?|->] : y2 < n \/ y2 = n + (y2 - n) by lia.
      * move=> + _. rewrite iter_up_poly_type_poly_type_lt; first done.
        move=> []. by lia.
      * move=> _ _. right. by exists n, (y2-n), (y1-n).
  - by move=> /=.
Qed.

(* x does not occur in t *)
Definition fresh_in (x: nat) (t: poly_type) := allfv_poly_type (fun y => x <> y) t.

Fixpoint fresh_inb (x: nat) (t: poly_type) :=
  match t with
  | poly_var y => if PeanoNat.Nat.eq_dec x y then false else true
  | poly_arr s t => fresh_inb x s && fresh_inb x t
  | poly_abs t => fresh_inb (1+x) t
  end.

Lemma fresh_inP {x t} : reflect (fresh_in x t) (fresh_inb x t).
Proof.
  elim: t x.
  - move=> n x. rewrite /=. case: (PeanoNat.Nat.eq_dec _ _).
    + move=> /= ->. by constructor.
    + move=> /= ?. by constructor.
  - move=> ? IH1 ? IH2 x /=. rewrite /fresh_in /= -?/(fresh_in _ _).
    apply /introP; rewrite (rwP (IH1 x)) (rwP (IH2 x)).
    + by case: (fresh_inb _ _); case (fresh_inb _ _).
    + case: (fresh_inb _ _); case (fresh_inb _ _); by move=> ? [? ?].
  - move=> t IH x. rewrite /fresh_in /= -?/(fresh_in _ _). apply /introP.
    + rewrite -(rwP (IH (S x))). apply: allfv_poly_type_impl. case; [done | by move=> /= *; lia].
    + have := (rwP (IH (S x))). case: (fresh_inb (S x) t); first done.
      move=> H _ H'. suff: false by done. apply /H.
      apply: allfv_poly_type_impl H'. case; [done | by move=> /= *; lia].
Qed.

Lemma fresh_in_many_poly_absI {x n t} : fresh_in (n+x) t -> fresh_in x (many_poly_abs n t).
Proof.
  move=> H. apply /allfv_poly_type_many_poly_absI.
  apply: allfv_poly_type_impl H => y ?.
  have [?|?] : y < n \/ n <= y by lia.
  - by rewrite iter_scons_lt.
  - rewrite iter_scons_ge; by lia.
Qed.

Lemma fresh_in_many_poly_arrI {x ss y} : Forall (fresh_in x) ss -> x <> y -> fresh_in x (many_poly_arr ss (poly_var y)).
Proof. move=> *. by apply: allfv_poly_type_many_poly_arrI. Qed.