From Undecidability.L Require Import Tactics.LTactics Datatypes.LBool.
From Undecidability.L Require Import Tactics.GenEncode.
Section Fix_XY.
Variable X Y:Type.
Variable intX : encodable X.
Variable intY : encodable Y.
MetaCoq Run (tmGenEncode "sum_enc" (X + Y)).
Hint Resolve sum_enc_correct : Lrewrite.
Global Instance encInj_sum_enc {H : encInj intX} {H' : encInj intY} : encInj (encodable_sum_enc).
Proof. register_inj. Qed.
Global Instance term_inl : computable (@inl X Y).
Proof.
extract constructor.
Qed.
Global Instance term_inr : computable (@inr X Y).
Proof.
extract constructor.
Qed.
End Fix_XY.
#[export] Hint Resolve sum_enc_correct : Lrewrite.
Section sum_eqb.
Variable X Y : Type.
Variable eqb__X : X -> X -> bool.
Variable spec__X : forall x y, reflect (x = y) (eqb__X x y).
Variable eqb__Y : Y -> Y -> bool.
Variable spec__Y : forall x y, reflect (x = y) (eqb__Y x y).
Definition sum_eqb (A B : X + Y) :=
match A,B with
| inl a,inl b => eqb__X a b
| inr a,inr b => eqb__Y a b
| _,_ => false
end.
Lemma sum_eqb_spec A B : reflect (A = B) (sum_eqb A B).
Proof using spec__X spec__Y.
destruct A, B; (try now econstructor);cbn.
-destruct (spec__X x x0); econstructor;congruence.
-destruct (spec__Y y y0); constructor;congruence.
Qed.
End sum_eqb.
From Undecidability Require Import EqBool.
Section int.
Variable X Y:Type.
Context {HX : encodable X} {HY : encodable Y}.
Global Instance eqbSum f g `{eqbClass (X:=X) f} `{eqbClass (X:=Y) g}:
eqbClass (sum_eqb f g).
Proof.
intros ? ?. eapply sum_eqb_spec. all:eauto using eqb_spec.
Qed.
Global Instance eqbComp_sum `{H:eqbComp X (R:=HX)} `{H':eqbComp Y (R:=HY)}:
eqbComp (sum X Y).
Proof.
constructor. unfold sum_eqb.
change (eqb0) with (eqb (X:=X)).
change (eqb1) with (eqb (X:=Y)).
extract.
Qed.
End int.
From Undecidability.L Require Import Tactics.GenEncode.
Section Fix_XY.
Variable X Y:Type.
Variable intX : encodable X.
Variable intY : encodable Y.
MetaCoq Run (tmGenEncode "sum_enc" (X + Y)).
Hint Resolve sum_enc_correct : Lrewrite.
Global Instance encInj_sum_enc {H : encInj intX} {H' : encInj intY} : encInj (encodable_sum_enc).
Proof. register_inj. Qed.
Global Instance term_inl : computable (@inl X Y).
Proof.
extract constructor.
Qed.
Global Instance term_inr : computable (@inr X Y).
Proof.
extract constructor.
Qed.
End Fix_XY.
#[export] Hint Resolve sum_enc_correct : Lrewrite.
Section sum_eqb.
Variable X Y : Type.
Variable eqb__X : X -> X -> bool.
Variable spec__X : forall x y, reflect (x = y) (eqb__X x y).
Variable eqb__Y : Y -> Y -> bool.
Variable spec__Y : forall x y, reflect (x = y) (eqb__Y x y).
Definition sum_eqb (A B : X + Y) :=
match A,B with
| inl a,inl b => eqb__X a b
| inr a,inr b => eqb__Y a b
| _,_ => false
end.
Lemma sum_eqb_spec A B : reflect (A = B) (sum_eqb A B).
Proof using spec__X spec__Y.
destruct A, B; (try now econstructor);cbn.
-destruct (spec__X x x0); econstructor;congruence.
-destruct (spec__Y y y0); constructor;congruence.
Qed.
End sum_eqb.
From Undecidability Require Import EqBool.
Section int.
Variable X Y:Type.
Context {HX : encodable X} {HY : encodable Y}.
Global Instance eqbSum f g `{eqbClass (X:=X) f} `{eqbClass (X:=Y) g}:
eqbClass (sum_eqb f g).
Proof.
intros ? ?. eapply sum_eqb_spec. all:eauto using eqb_spec.
Qed.
Global Instance eqbComp_sum `{H:eqbComp X (R:=HX)} `{H':eqbComp Y (R:=HY)}:
eqbComp (sum X Y).
Proof.
constructor. unfold sum_eqb.
change (eqb0) with (eqb (X:=X)).
change (eqb1) with (eqb (X:=Y)).
extract.
Qed.
End int.